'expo_prior': 0.1 } predict_config = {} ''' Settings nested cross-validation. ''' K_range = [1, 2, 3] no_folds = 10 no_threads = 5 parallel = False output_file = "./results.txt" files_nested_performances = [ "./fold_%s.txt" % fold for fold in range(1, no_folds + 1) ] ''' Construct the parameter search. ''' parameter_search = [{'K': K} for K in K_range] ''' Load in the dataset. ''' R, M = load_ccle_ic50() ''' Run the cross-validation framework. ''' nested_crossval = MatrixNestedCrossValidation( method=nmf_np, R=R, M=M, K=no_folds, P=no_threads, parameter_search=parameter_search, train_config=train_config, predict_config=predict_config, file_performance=output_file, files_nested_performances=files_nested_performances, ) nested_crossval.run(parallel=parallel)
project_location = "/home/tab43/Documents/Projects/libraries/" # "/Users/thomasbrouwer/Documents/Projects/libraries/" import sys sys.path.append(project_location) from BNMTF_ARD.data.drug_sensitivity.load_data import load_gdsc_ic50 from BNMTF_ARD.data.drug_sensitivity.load_data import load_ctrp_ec50 from BNMTF_ARD.data.drug_sensitivity.load_data import load_ccle_ic50 from BNMTF_ARD.data.drug_sensitivity.load_data import load_ccle_ec50 import itertools import matplotlib.pyplot as plt ''' Load in the data. ''' R_gdsc, M_gdsc = load_gdsc_ic50() R_ctrp, M_ctrp = load_ctrp_ec50() R_ccle_ic, M_ccle_ic = load_ccle_ic50() R_ccle_ec, M_ccle_ec = load_ccle_ec50() def extract_values(R, M): I, J = R.shape return [ R[i, j] for i, j in itertools.product(range(I), range(J)) if M[i, j] ] values_plotnames_bins = [ (extract_values(R_gdsc, M_gdsc), 'distribution_gdsc_ic50.pdf', [v - 0.5 for v in range(0, 100 + 10, 5)]), (extract_values(R_ctrp, M_ctrp), 'distribution_ctrp_ec50.pdf', [v - 0.5 for v in range(0, 100 + 10, 5)]),