コード例 #1
0
ファイル: #3.py プロジェクト: poojakancherla/Problem-Solving
    vals = []
    helper(root)
    return '[' + ','.join(vals) + ']'


def deserialize(data):
    def helper(root):
        val = next(vals)
        if val == '#': return None
        root = Node(int(val))
        root.left = helper(root)
        root.right = helper(root)
        return root

    vals = iter(data[1:-1].split(','))
    return helper(root)


root = Node("1")
root.left = Node("2")
root.left.left = Node('6')
root.right = Node("3")

data = serialize(root)
print(data)
deserialized_root = deserialize(data)
from BaseBST import printTree

printTree(deserialized_root)
コード例 #2
0
from BaseBST import genTree, printTree


def mergeTrees(t1, t2):

    if not t1 and not t2: return None
    if not t2: return t1
    if not t1: return t2

    t1.val += t2.val
    t1.left = mergeTrees(t1.left, t2.left)
    t1.right = mergeTrees(t1.right, t2.right)

    return t1


t1 = genTree("[1,3,2,5]")
t2 = genTree("[2,1,3,null,4,null,7]")

printTree(mergeTrees(t1, t2))
コード例 #3
0
from BaseBST import printTree, TreeNode
# The root is the maximum number in the array
# The left subtree is the maximum tree constructed from left part subarray divided by the maximum number
# The right subtree is the maximum tree constructed from right part subarray divided by the maximum number


def constructMaximumBinaryTree(nums):
    """
    :type nums: List[int]
    :rtype: TreeNode
    """
    if not nums: return None
    maxNum = max(nums)  # Finding the max in list to construct root
    maxIndex = nums.index(
        maxNum
    )  #Finding index in order to form left list for left subtree and right list for right subtree

    root = TreeNode(maxNum)  # forming the root
    root.left = constructMaximumBinaryTree(
        nums[:maxIndex]
    )  #left subtree constructed from left elements of root element
    root.right = constructMaximumBinaryTree(
        nums[maxIndex +
             1:])  # right subtree from right elements of root element

    return root


nums = [3, 2, 1, 6, 0, 5]
printTree(constructMaximumBinaryTree(nums))
コード例 #4
0
#700. https://leetcode.com/problems/search-in-a-binary-search-tree/description/

from BaseBST import genTree, printTree


def searchBST(root, target):
    if not root: return []
    if root.val == target:  # if root equals the target, return the root
        return root
    if target < root.val:  # if target < root, search in its left subtree
        return searchBST(root.left, target)
    else:
        return searchBST(
            root.right,
            target)  # if target > root, search in its right subtree


root = genTree("[4, 2, 7, 1, 3, null, null]")
printTree(searchBST(root, 2))
コード例 #5
0
    if not root: return None

    root.left = pruneTree(root.left)
    root.right = pruneTree(root.right)

    if root.val == 1: return root

    if root.val == 0:
        if not root.left and not root.right: return None

    return root




root = genTree('[1,0,1,0,0,0,1]')
printTree(pruneTree(root))

    #
    #
    #
    # if not root: return None
    # node = root
    # def containsOne(node):
    #     if node.val == 0 and (pruneTree(node.left) != 1 or pruneTree(node.right) != 1):
    #         return False
    #     return True
    #
    # if not containsOne(node.left) and not containsOne(node.right):
    #     return None
コード例 #6
0
from BaseBST import genTree, printTree
from collections import deque

def invertTreeRecursive(root):
    if not root: return None

    root.right, root.left = invertTreeRecursive(root.left), invertTreeRecursive(root.right)

    return root

def invertTreeBFS(root):
    if not root: return None
    queue = deque([root])
    while queue:
        node = queue.popleft()
        if node:
            node.left, node.right = node.right, node.left
            if node.left: queue.append(node.left)
            if node.right: queue.append(node.right)
    return root

root = genTree('[4,2,7,1,3,6,9]')

# printTree(invertTreeRecursive(root))

printTree(invertTreeBFS(root))
コード例 #7
0
# https://leetcode.com/problems/insert-into-a-binary-search-tree/description/
from BaseBST import genTree, printTree, TreeNode

# if there is no root, then just return the node of the given value
# Using recursion, check if the val is less than or greater than each node and according add it as a left or right node


def insertIntoBST(root, val):

    if not root: return TreeNode(val)
    if val < root.val: root.left = insertIntoBST(root.left, val)
    if val > root.val: root.right = insertIntoBST(root.right, val)

    return root


root = genTree('[4,2,7,1,3]')
printTree(insertIntoBST(root, 5))
コード例 #8
0
# https://leetcode.com/problems/trim-a-binary-search-tree/

from BaseBST import genTree, printTree


#  if root is less than the left range value, then we pass the root and its left subtree and trim from the right node onwards
#  if root is greater than the right range value, then we pass the root and its right subtree and trim from the left node onwards
#  repeat this until there is no node and then return the root
def trimBST(root, L, R):
    def trim(root):
        if not root: return None
        if root.val < L: return trim(root.right)
        elif root.val > R: return trim(root.left)
        else:
            root.left = trim(root.left)
            root.right = trim(root.right)
        return root

    return trim(root)


root = genTree('[3,0,4,null,2,null,null,1]')
printTree(trimBST(root, 1, 3))
コード例 #9
0
# https://leetcode.com/problems/convert-sorted-array-to-binary-search-tree/description/
from BaseBST import TreeNode, printTree


# 1.Since the given list is sorted, we can choose the middle element to be root node
# 2. Then the list elements to the left of the middle element will be lesser and can form the left subtree
# 3. All the list elements to the right of the middle element will be greater and can form the right subtree
# 4. Form the left subtree from leftList and right tree from rightList
# 5. Call the function recursively until there are no elements left
def SortedToBST(nums):
    if nums == []: return None

    middle = len(arr) // 2
    root = TreeNode(nums[middle])

    leftList = nums[:middle]
    rightList = nums[middle + 1:]

    if leftList: root.left = SortedToBST(leftList)
    if rightList: root.right = SortedToBST(rightList)

    return root


printTree(SortedToBST([-10, -3, 0, 5, 9]))