コード例 #1
0
ファイル: DataObject.py プロジェクト: pralhadburli/raven
    def __init__(self):
        """
      Constructor.
      @ In, None
      @ Out, None
    """
        BaseType.__init__(self)
        self.name = 'DataObject'
        self.printTag = self.name
        self._sampleTag = 'RAVEN_sample_ID'  # column name to track samples
        self.protectedTags = ['RAVEN_parentID', 'RAVEN_isEnding'
                              ]  # list(str) protected RAVEN variable names,
        #   should not be avail to user as var names
        self._inputs = []  # list(str) if input variables
        self._outputs = []  # list(str) of output variables
        self._metavars = []  # list(str) of POINTWISE metadata variables
        self._orderedVars = []  # list(str) of vars IN ORDER of their index

        self._meta = {}  # dictionary to collect meta until data is collapsed
        self._selectInput = None  # if not None, describes how to collect input data from history
        self._selectOutput = None  # if not None, describes how to collect output data from history
        self._pivotParams = {
        }  # independent dimensions as keys, values are the vars that depend on them
        self._fromVarToIndex = {
        }  # mapping between variables and indexes ({var:index}).
        #   "index" here refers to dimensional variables (e.g. time, x, y, z etc)
        self._aliases = {}  # variable aliases

        self._data = None  # underlying data structure
        self._collector = None  # object used to collect samples

        self._inputKDTree = None  # for finding outputs given inputs (pointset only?)
        self._scaleFactors = None  # scaling factors inputs as {var:(mean,scale)}
        self.hierarchical = False  # this flag controls the printing/plotting of the dataobject
コード例 #2
0
    def __init__(self):
        """
      Init of Base class
      @ In, None
      @ Out, None
    """
        BaseType.__init__(self)

        ## Use the class name as the type, so as we extend this class, this is
        ## automatically updated to be the correct value. Honestly, we shouldn't
        ## need this as we can just reference the class name wherever this is used.
        ## Otherwise, if you don't agree with that sentiment, then this should at
        ## least propogate itself up the hierarchy
        self.type = self.__class__.__name__

        # outstreaming options
        self.options = {}
        # counter
        self.counter = 0
        # overwrite outstream?
        self.overwrite = True
        # outstream types available
        self.availableOutStreamType = []
        # number of agregated outstreams
        self.numberAggregatedOS = 1
        # optional sub directory for printing and plotting
        self.subDirectory = None
        self.printTag = 'OUTSTREAM MANAGER'
        self.filename = ''
コード例 #3
0
    def __init__(self):
        """
      Default Constructor that will initialize member variables with reasonable
      defaults or empty lists/dictionaries where applicable.
      @ In, None
      @ Out, None
    """
        BaseType.__init__(self)
        Assembler.__init__(self)
        self.counter = 0  # Counter of the samples performed (better the input generated!!!). It is reset by calling the function self.initialize
        self.auxcnt = 0  # Aux counter of samples performed (for its usage check initialize method)
        self.limit = sys.maxsize  # maximum number of Samples (for example, Monte Carlo = Number of HistorySet to run, DET = Unlimited)
        self.toBeSampled = {
        }  # Sampling mapping dictionary {'Variable Name':'name of the distribution'}
        self.dependentSample = {
        }  # Sampling mapping dictionary for dependent variables {'Variable Name':'name of the external function'}
        self.distDict = {
        }  # Contains the instance of the distribution to be used, it is created every time the sampler is initialized. keys are the variable names
        self.funcDict = {
        }  # Contains the instance of the function     to be used, it is created every time the sampler is initialized. keys are the variable names
        self.values = {
        }  # for each variable the current value {'var name':value}
        self.inputInfo = {
        }  # depending on the sampler several different type of keywarded information could be present only one is mandatory, see below
        self.initSeed = None  # if not provided the seed is randomly generated at the istanciation of the sampler, the step can override the seed by sending in another seed
        self.inputInfo[
            'SampledVars'] = self.values  # this is the location where to get the values of the sampled variables
        self.inputInfo['SampledVarsPb'] = {
        }  # this is the location where to get the probability of the sampled variables
        self.inputInfo[
            'PointProbability'] = None  # this is the location where the point wise probability is stored (probability associated to a sampled point)
        self.inputInfo['crowDist'] = {
        }  # Stores a dictionary that contains the information to create a crow distribution.  Stored as a json object
        self.constants = {}  # In this dictionary
        self.reseedAtEachIteration = False  # Logical flag. True if every newer evaluation is performed after a new reseeding
        self.FIXME = False  # FIXME flag
        self.printTag = self.type  # prefix for all prints (sampler type)
        self.restartData = None  # presampled points to restart from
        self.restartTolerance = 1e-15  # strictness with which to find matches in the restart data

        self._endJobRunnable = sys.maxsize  # max number of inputs creatable by the sampler right after a job ends (e.g., infinite for MC, 1 for Adaptive, etc)

        ######
        self.variables2distributionsMapping = {
        }  # for each variable 'varName'  , the following informations are included:  'varName': {'dim': 1, 'reducedDim': 1,'totDim': 2, 'name': 'distName'} ; dim = dimension of the variable; reducedDim = dimension of the variable in the transformed space; totDim = total dimensionality of its associated distribution
        self.distributions2variablesMapping = {
        }  # for each variable 'distName' , the following informations are included: 'distName': [{'var1': 1}, {'var2': 2}]} where for each var it is indicated the var dimension
        self.NDSamplingParams = {
        }  # this dictionary contains a dictionary for each ND distribution (key). This latter dictionary contains the initialization parameters of the ND inverseCDF ('initialGridDisc' and 'tolerance')
        ######
        self.addAssemblerObject('Restart', '-n', True)

        #used for PCA analysis
        self.variablesTransformationDict = {
        }  # for each variable 'modelName', the following informations are included: {'modelName': {latentVariables:[latentVar1, latentVar2, ...], manifestVariables:[manifestVar1,manifestVar2,...]}}
        self.transformationMethod = {
        }  # transformation method used in variablesTransformation node {'modelName':method}
        self.entitiesToRemove = [
        ]  # This variable is used in order to make sure the transformation info is printed once in the output xml file.
コード例 #4
0
ファイル: Metric.py プロジェクト: mattdon/raven
 def __init__(self):
   """
     This is the basic method initialize the metric object
     @ In, none
     @ Out, none
   """
   BaseType.__init__(self)
   self.type = self.__class__.__name__
   self.name = self.__class__.__name__
コード例 #5
0
 def __init__(self):
     """
   This is the basic method initialize the metric object
   @ In, none
   @ Out, none
 """
     BaseType.__init__(self)
     self.type = self.__class__.__name__
     self.name = self.__class__.__name__
     self.acceptsProbability = False  #If True the metric needs to be able to handle (value,probability) where value and probability are lists
     self.acceptsDistribution = False  #If True the metric needs to be able to handle a passed in Distribution
コード例 #6
0
ファイル: Databases.py プロジェクト: since801/raven
 def __init__(self):
     """
   Constructor
   @ In, None
   @ Out, None
 """
     BaseType.__init__(self)  # Base Class
     self.database = None  # Database object
     self.databaseDir = ''  # Database directory. Default = working directory.
     self.workingDir = ''  #
     self.printTag = 'DATABASE'  # For printing verbosity labels
     self.variables = None  # if not None, list of specific variables requested to be stored by user
コード例 #7
0
 def __init__(self):
   """
     Constructor
     @ In,  None
     @ Out, None
   """
   BaseType.__init__(self)
   self.__file             = None  # when open, refers to open file, else None
   self.__path             = ''    # file path
   self.__base             = ''    # file base
   self.__ext              = None  # file extension
   self.__linkedModel      = None  # hard link to a certain Code subtype (e.g. RELAP-7, MooseBasedApp, etc,)
   self.type               = None  # type ("type" in the input) to label a file to any particular subcode in the code interface
   self.perturbable        = False # is this file perturbable by a sampling strategy?
コード例 #8
0
ファイル: Databases.py プロジェクト: sonatsen/raven
 def __init__(self):
     """
   Constructor
   @ In, None
   @ Out, None
 """
     # Base Class
     BaseType.__init__(self)
     # Database object
     self.database = None
     # Database directory. Default = working directory.
     self.databaseDir = ''
     self.workingDir = ''
     self.printTag = 'DATABASE'
コード例 #9
0
ファイル: Optimizer.py プロジェクト: mattdon/raven
  def __init__(self):
    """
      Default Constructor that will initialize member variables with reasonable
      defaults or empty lists/dictionaries where applicable.
      @ In, None
      @ Out, None
    """
    #FIXME: Since the similarity of this class with the base sampler, we should merge this
    BaseType.__init__(self)
    Assembler.__init__(self)
    self.counter                        = {}                        # Dict containing counters used for based and derived class
    self.counter['mdlEval']             = 0                         # Counter of the model evaluation performed (better the input generated!!!). It is reset by calling the function self.initialize
    self.counter['varsUpdate']          = 0                         # Counter of the optimization iteration.
    self.limit                          = {}                        # Dict containing limits for each counter
    self.limit['mdlEval']               = sys.maxsize               # Maximum number of the loss function evaluation
    self.limit['varsUpdate']            = sys.maxsize               # Maximum number of the optimization iteration.
    self.initSeed                       = None                      # Seed for random number generators
    self.optVars                        = None                      # Decision variables for optimization
    self.optVarsInit                    = {}                        # Dict containing upper/lower bounds and initial of each decision variables
    self.optVarsInit['upperBound']      = {}                        # Dict containing upper bounds of each decision variables
    self.optVarsInit['lowerBound']      = {}                        # Dict containing lower bounds of each decision variables
    self.optVarsInit['initial']         = {}                        # Dict containing initial values of each decision variables
    self.optVarsInit['ranges']          = {}                        # Dict of the ranges (min and max) of each variable's domain
    self.optVarsHist                    = {}                        # History of normalized decision variables for each iteration
    self.nVar                           = 0                         # Number of decision variables
    self.objVar                         = None                      # Objective variable to be optimized
    self.optType                        = None                      # Either maximize or minimize
    self.optTraj                        = None                      # Identifiers of parallel optimization trajectories
    self.thresholdTrajRemoval           = None                      # Threshold used to determine the convergence of parallel optimization trajectories
    self.paramDict                      = {}                        # Dict containing additional parameters for derived class
    self.absConvergenceTol              = 0.0                       # Convergence threshold (absolute value)
    self.relConvergenceTol              = 1.e-3                     # Convergence threshold (relative value)
    self.solutionExport                 = None                      #This is the data used to export the solution (it could also not be present)
    self.values                         = {}                        # for each variable the current value {'var name':value}
    self.inputInfo                      = {}                        # depending on the optimizer several different type of keywarded information could be present only one is mandatory, see below
    self.inputInfo['SampledVars'     ]  = self.values               # this is the location where to get the values of the sampled variables
    self.constants                      = {}                        # dictionary of constants variables
    self.FIXME                          = False                     # FIXME flag
    self.printTag                       = self.type                 # prefix for all prints (optimizer type)

    self._endJobRunnable                = sys.maxsize               # max number of inputs creatable by the optimizer right after a job ends

    self.constraintFunction             = None                      # External constraint function, could be not present
    self.mdlEvalHist                    = None                      # Containing information of all model evaluation
    self.objSearchingROM                = None                      # ROM used internally for fast loss function evaluation

    self.addAssemblerObject('Restart' ,'-n',True)
    self.addAssemblerObject('TargetEvaluation','1')
    self.addAssemblerObject('Function','-1')
コード例 #10
0
 def __init__(self,runInfoDict):
   """
     Constructor
     @ In, runInfoDict, dict, the dictionary containing the runInfo (read in the XML input file)
     @ Out, None
   """
   BaseType.__init__(self)
   Assembler.__init__(self)
   #if alias are defined in the input it defines a mapping between the variable names in the framework and the one for the generation of the input
   #self.alias[framework variable name] = [input code name]. For Example, for a MooseBasedApp, the alias would be self.alias['internal_variable_name'] = 'Material|Fuel|thermal_conductivity'
   self.alias    = {'input':{},'output':{}}
   self.subType  = ''
   self.runQueue = []
   self.printTag = 'MODEL'
   self.createWorkingDir = False
コード例 #11
0
ファイル: Databases.py プロジェクト: JD-Richards/raven
 def __init__(self,runInfoDict):
   """
     Constructor
     @ In, None
     @ Out, None
   """
   BaseType.__init__(self)
   self.database = None                # Database object
   self.exist        = False           # does it exist?
   self.built       = False            # is it built?
   self.filename    = ""               # filename
   self.workingDir  = runInfoDict['WorkingDir']
   self.databaseDir = self.workingDir  # Database directory. Default = working directory.
   self.printTag = 'DATABASE'          # For printing verbosity labels
   self.variables = None               # if not None, list of specific variables requested to be stored by user
コード例 #12
0
ファイル: Functions.py プロジェクト: sonatsen/raven
 def __init__(self,runInfoDict):
   """
     Constructor
     @ In, runInfoDict, dict, the dictionary containing the runInfo (read in the XML input file)
     @ Out, None
   """
   BaseType.__init__(self)
   self.workingDir                      = runInfoDict['WorkingDir']
   self.__functionFile                  = ''                                # function file name
   self.__actionDictionary              = {}                                # action dictionary
   # dictionary of implemented actions
   self.__actionImplemented             = {'residuumSign':False,'supportBoundingTest':False,'residuum':False,'gradient':False}
   self.__inputVariables                = []                                # list of variables' names' given in input (xml)
   self.__inputFromWhat                 = {}                                # dictionary of input data type
   self.__inputFromWhat['dict']         = self.__inputFromDict
   #self.__inputFromWhat['Data']         = self.__inputFromData
   self.printTag                        = 'FUNCTIONS'
コード例 #13
0
 def getInputSpecification(cls):
     """
   Method to get a reference to a class that specifies the input data for class "cls".
   @ In, cls, the class for which we are retrieving the specification
   @ Out, inputSpecification, InputData.ParameterInput, class to use for specifying the input of cls.
 """
     spec = BaseType.getInputSpecification()
     spec.addParam('dir', param_type=InputTypes.StringType, required=False)
     return spec
コード例 #14
0
ファイル: Steps.py プロジェクト: sonatsen/raven
 def __init__(self):
     """
   Constructor
   @ In, None
   @ Out, None
 """
     BaseType.__init__(self)
     self.parList = [
     ]  # List of list [[role played in the step, class type, specialization, global name (user assigned by the input)]]
     self.sleepTime = 0.005  # Waiting time before checking if a run is finished
     #If a step possess re-seeding instruction it is going to ask to the sampler to re-seed according
     #  re-seeding = a number to be used as a new seed
     #  re-seeding = 'continue' the use the already present random environment
     #If there is no instruction (self.initSeed = None) the sampler will reinitialize
     self.initSeed = None
     self._knownAttribute += [
         'sleepTime', 're-seeding', 'pauseAtEnd', 'fromDirectory'
     ]
     self._excludeFromModelValidation = ['SolutionExport']
     self.printTag = 'STEPS'