コード例 #1
0
class KDTree(object):
    """An interface to Thomas Hamelryck's C KDTree module that can handle
    periodic boundary conditions.  Both point and pair search are performed
    using the single :meth:`search` method and results are retrieved using
    :meth:`getIndices` and :meth:`getDistances`.

    **Periodic Boundary Conditions**

    *Point search*

    A point search around a *center*, indicated with a question mark (``?``)
    below, involves making images of the point in cells sharing a wall or an
    edge with the unitcell that contains the system.  The search is performed
    for all images of the *center* (27 in 3-dimensional space) and unique
    indices with the minimum distance from them to the *center* are returned.
    ::

          _____________________________
         |        1|        2|        3|
         |       ? |       ? |      ?  |
         |_________|_________|_________|
         |        4|o  h h  5|        6| ? and H interact in periodic image 4
         |       ?H| h  o  ? |      ?  | but not in the original unitcell (5)
         |_________|_________|_________|
         |        7|        8|        9|
         |       ? |       ? |      ?  |
         |_________|_________|_________|

    There are two requirements for this approach to work: (i) the *center* must
    be in the original unitcell, and (ii) the system must be in the original
    unitcell with parts in its immediate periodic images.

    *Pair search*

    A pair search involves making 26 (or 8 in 2-d) replicas of the system
    coordinates.  A KDTree is built for the system (``O`` and ``H``) and all
    its replicas (``o`` and ``h``).  After pair search is performed, unique
    pairs of indices and minimum distance between them are returned.
    ::

          _____________________________
         |o  h h  1|o  h h  2|o  h h  3|
        h| h  o   h| h  o   h| h  o    |
         |_________|_________|_________|
         |o  h h  4|O  H H  5|o  h h  6|
        h| h  o   H| H  O   h| h  o    |
         |_________|_________|_________|
         |o  h h  7|o  h h  8|o  h h  9|
        h| h  o   h| h  o   h| h  o    |
         |_________|_________|_________|

    Only requirement for this approach to work is that the system must be
    in the original unitcell with parts in its immediate periodic images.


    .. seealso::
       :func:`.wrapAtoms` can be used for wrapping atoms into the single
       periodic image of the system."""
    def __init__(self, coords, **kwargs):
        """
        :arg coords: coordinate array with shape ``(N, 3)``, where N is number
            of atoms
        :type coords: :class:`numpy.ndarray`, :class:`.Atomic`, :class:`.Frame`

        :arg unitcell: orthorhombic unitcell dimension array with shape
            ``(3,)``
        :type unitcell: :class:`numpy.ndarray`

        :arg bucketsize: number of points per tree node, default is 10
        :type bucketsize: int"""

        unitcell = kwargs.get('unitcell')
        if not isinstance(coords, ndarray):
            if unitcell is None:
                try:
                    unitcell = coords.getUnitcell()
                except AttributeError:
                    pass
                else:
                    if unitcell is not None:
                        LOGGER.info('Unitcell information from {0} will be '
                                    'used.'.format(str(coords)))
            try:
                # using getCoords() because coords will be stored internally
                # and reused when needed, this will avoid unexpected results
                # due to changes made to coordinates externally
                coords = coords.getCoords()
            except AttributeError:
                raise TypeError('coords must be a Numpy array or must have '
                                'getCoords attribute')
        else:
            coords = coords.copy()

        if coords.ndim != 2:
            raise Exception('coords.ndim must be 2')
        if coords.shape[-1] != 3:
            raise Exception('coords.shape must be (N,3)')
        if coords.min() <= -1e6 or coords.max() >= 1e6:
            raise Exception('coords must be between -1e6 and 1e6')

        self._bucketsize = kwargs.get('bucketsize', 10)

        if not isinstance(self._bucketsize, int):
            raise TypeError('bucketsize must be an integer')
        if self._bucketsize < 1:
            raise ValueError('bucketsize must be a positive integer')

        self._coords = None
        self._unitcell = None
        self._neighbors = None
        if unitcell is None:
            self._kdtree = CKDTree(3, self._bucketsize)
            self._kdtree.set_data(coords)
        else:
            if not isinstance(unitcell, ndarray):
                raise TypeError('unitcell must be a Numpy array')
            if unitcell.shape != (3, ):
                raise ValueError('unitcell.shape must be (3,)')
            self._kdtree = CKDTree(3, self._bucketsize)
            self._kdtree.set_data(coords)
            self._coords = coords
            self._unitcell = unitcell
            self._replicate = REPLICATE * unitcell
            self._kdtree2 = None
            self._pbcdict = {}
            self._pbckeys = []
            self._n_atoms = coords.shape[0]
        self._none = kwargs.pop('none', lambda: None)
        try:
            self._none()
        except TypeError:
            raise TypeError('none argument must be callable')
        self._oncall = kwargs.pop('oncall', 'both')
        assert self._oncall in ('both', 'dist'), 'oncall must be both or dist'

    def __call__(self, radius, center=None):
        """Shorthand method for searching and retrieving results."""

        self.search(radius, center)
        if self._oncall == 'both':
            return self.getIndices(), self.getDistances()
        elif self._oncall == 'dist':
            return self.getDistances()

    def search(self, radius, center=None):
        """Search pairs within *radius* of each other or points within *radius*
        of *center*.

        :arg radius: distance (Å)
        :type radius: float

        :arg center: a point in Cartesian coordinate system
        :type center: :class:`numpy.ndarray`"""

        if not isinstance(radius, (float, int)):
            raise TypeError('radius must be a number')
        if radius <= 0:
            raise TypeError('radius must be a positive number')

        if center is not None:
            if not isinstance(center, ndarray):
                raise TypeError('center must be a Numpy array instance')
            if center.shape != (3, ):
                raise ValueError('center.shape must be (3,)')

            if self._unitcell is None:
                self._kdtree.search_center_radius(center, radius)
                self._neighbors = None

            else:
                kdtree = self._kdtree
                search = kdtree.search_center_radius
                get_radii = lambda: get_KDTree_radii(kdtree)
                get_indices = lambda: get_KDTree_indices(kdtree)
                get_count = kdtree.get_count

                _dict = {}
                _dict_get = _dict.get
                _dict_set = _dict.__setitem__
                for center in center + self._replicate:
                    search(center, radius)
                    if get_count():
                        [
                            _dict_set(i, min(r, _dict_get(i, 1e6)))
                            for i, r in zip(get_indices(), get_radii())
                        ]
                self._pbcdict = _dict
                self._pdbkeys = list(_dict)

        else:
            if self._unitcell is None:
                self._neighbors = self._kdtree.neighbor_search(radius)
            else:
                kdtree = self._kdtree2
                if kdtree is None:
                    coords = self._coords
                    coords = concatenate(
                        [coords + rep for rep in self._replicate])
                    kdtree = CKDTree(3, self._bucketsize)
                    kdtree.set_data(coords)
                    self._kdtree2 = kdtree
                n_atoms = len(self._coords)
                _dict = {}
                neighbors = kdtree.neighbor_search(radius)
                if kdtree.neighbor_get_count():
                    _get = _dict.get
                    _set = _dict.__setitem__

                    for nb in neighbors:
                        i = nb.index1 % n_atoms
                        j = nb.index2 % n_atoms
                        if i < j:
                            _set((i, j), min(nb.radius, _get((i, j), 1e6)))
                        elif j < i:
                            _set((j, i), min(nb.radius, _get((j, i), 1e6)))
                self._pbcdict = _dict
                self._pdbkeys = list(_dict)

    def getIndices(self):
        """Returns array of indices for points or pairs, depending on the type
        of the most recent search."""

        if self.getCount():
            if self._unitcell is None:
                if self._neighbors is None:
                    return get_KDTree_indices(self._kdtree)
                else:
                    return array([(n.index1, n.index2)
                                  for n in self._neighbors], int)
            else:
                return array(self._pdbkeys)
        return self._none()

    def getDistances(self):
        """Returns array of distances."""

        if self.getCount():
            if self._unitcell is None:
                if self._neighbors is None:
                    return get_KDTree_radii(self._kdtree)
                else:
                    return array([n.radius for n in self._neighbors])
            else:
                _dict = self._pbcdict
                return array([_dict[i] for i in self._pdbkeys])
        return self._none()

    def getCount(self):
        """Returns number of points or pairs."""

        if self._unitcell is None:
            if self._neighbors is None:
                return self._kdtree.get_count()
            else:
                return self._kdtree.neighbor_get_count()
        else:
            return len(self._pbcdict)
コード例 #2
0
    def search(self, radius, center=None):
        """Search pairs within *radius* of each other or points within *radius*
        of *center*.

        :arg radius: distance (Å)
        :type radius: float

        :arg center: a point in Cartesian coordinate system
        :type center: :class:`numpy.ndarray`"""

        if not isinstance(radius, (float, int)):
            raise TypeError('radius must be a number')
        if radius <= 0:
            raise TypeError('radius must be a positive number')

        if center is not None:
            if not isinstance(center, ndarray):
                raise TypeError('center must be a Numpy array instance')
            if center.shape != (3, ):
                raise ValueError('center.shape must be (3,)')

            if self._unitcell is None:
                self._kdtree.search_center_radius(center, radius)
                self._neighbors = None

            else:
                kdtree = self._kdtree
                search = kdtree.search_center_radius
                get_radii = lambda: get_KDTree_radii(kdtree)
                get_indices = lambda: get_KDTree_indices(kdtree)
                get_count = kdtree.get_count

                _dict = {}
                _dict_get = _dict.get
                _dict_set = _dict.__setitem__
                for center in center + self._replicate:
                    search(center, radius)
                    if get_count():
                        [
                            _dict_set(i, min(r, _dict_get(i, 1e6)))
                            for i, r in zip(get_indices(), get_radii())
                        ]
                self._pbcdict = _dict
                self._pdbkeys = list(_dict)

        else:
            if self._unitcell is None:
                self._neighbors = self._kdtree.neighbor_search(radius)
            else:
                kdtree = self._kdtree2
                if kdtree is None:
                    coords = self._coords
                    coords = concatenate(
                        [coords + rep for rep in self._replicate])
                    kdtree = CKDTree(3, self._bucketsize)
                    kdtree.set_data(coords)
                    self._kdtree2 = kdtree
                n_atoms = len(self._coords)
                _dict = {}
                neighbors = kdtree.neighbor_search(radius)
                if kdtree.neighbor_get_count():
                    _get = _dict.get
                    _set = _dict.__setitem__

                    for nb in neighbors:
                        i = nb.index1 % n_atoms
                        j = nb.index2 % n_atoms
                        if i < j:
                            _set((i, j), min(nb.radius, _get((i, j), 1e6)))
                        elif j < i:
                            _set((j, i), min(nb.radius, _get((j, i), 1e6)))
                self._pbcdict = _dict
                self._pdbkeys = list(_dict)