imfs_filename = join(lfp_folder, 'EMD', 'imfs.bin') imf_kilosort_folder = join(lfp_folder, 'Kilosort') spike_info = pd.read_pickle( join(spikes_folder, 'spike_info_after_cortex_sorting.df')) template_info = pd.read_pickle(join(spikes_folder, 'template_info.df')) # ------------------------------------------------- # Load the generated EMD data and have a look # ------------------------------------------------- num_of_imfs = const.NUMBER_OF_IMFS num_of_channels = const.NUMBER_OF_LFP_CHANNELS_IN_BINARY_FILE imfs = emd.load_memmaped_imfs(imfs_filename, dtype=np.int16, num_of_imfs=num_of_imfs, num_of_channels=num_of_channels) imf = 0 time = 1000000 buffer = 5000 factor = 2 args = [factor, time, buffer, imfs] def get_specific_imf_spaced(imf, factor, data): imf_data = data[:, imf, :] return cdts.space_data_factor(imf_data, factor) def get_time_window(time, buffer, data):
analysis_folder = join(const_rat.base_save_folder, const_rat.rat_folder, const_rat.date_folders[date], 'Analysis', 'NeuropixelSimulations', 'Long') kilosort_folder = join(analysis_folder, 'Kilosort') results_folder = join(analysis_folder, 'Results') spike_lfp_folder = join(results_folder, 'SpikeLfpCorrelations', 'SpikesAwayFromSuccTrials') template_info = pd.read_pickle(join(kilosort_folder, 'template_info.df')) spike_info = pd.read_pickle(join(kilosort_folder, 'spike_info_after_cleaning.df')) imfs_file = join(const_rat.base_save_folder, const_rat.rat_folder, const_rat.date_folders[date], 'Analysis', 'Lfp', 'EMD', 'imfs.bin') imfs = emd.load_memmaped_imfs(imfs_file, const_comm.NUMBER_OF_IMFS, const_comm.NUMBER_OF_LFP_CHANNELS_IN_BINARY_FILE) # </editor-fold> # ------------------------------------------------- # <editor-fold desc="GET TIMES OF SUCCESSFUL TRIALS"> camera_pulses, beam_breaks, sounds = \ sync_funcs.get_time_points_of_events_in_sync_file(data_folder, clean=True, cam_ttl_pulse_period= const_comm.CAMERA_TTL_PULSES_TIMEPOINT_PERIOD) sounds_dur = sounds[:, 1] - sounds[:, 0] reward_sounds = sounds[sounds_dur < 4000] # Using the start of the reward tone to generate events # There is a difference of 78.6 frames (+-2) between the reward tone and the csv file event (about 700ms)