import time from time import sleep print '''PUT ASCII ART HERE BECAUSE ASCII!!! ''' User = raw_input("Please select a function to test: \n") if User == 1: Led() if User == 2: loop() if User == 3: servo() board = Arduino() sensor = Sensor(board, "A0") def loop(): value = sensor.value or 1 value = value / 2 print value sensor.on() def servo(): servo.set_position(180) sleep(2)
from BreakfastSerial import Arduino from components import * from time import sleep board = Arduino('/dev/cu.usbmodem1421') s = Servo(board, 9) s.reset() while True: cmd = input("command: ") if cmd != "q": s.set_position(cmd) else: s.reset() break
#this one is made for servos import cv2 from BreakfastSerial import Arduino from components import * face_cas = cv2.CascadeClassifier( 'cascades/data/haarcascade_frontalface_alt2.xml' ) #the file you need to recoginze faces can be swapped out for the other ones in the data file board = Arduino("/dev/cu.usbmodem1421") cap = cv2.VideoCapture(0) #Sets the video input to the main webcam MIN_X, MAX_X, MIN_Y, MAX_Y = 150, 400, 50, 225 #telling the user where to move to be in the optimal placement on the screen, or if servos were involved then where to move the servo so that the face is in the middle def check_location( x, y, w, h ): #needs to be fixed because when the subject is very close to the camera, all points will be outside the min and max values left_x = x right_x = x + w top_y = y bottom_y = y + h if left_x < MIN_X: print("move left") while (left_x < MIN_X): break
import tensorflow as tf import tflearn from BreakfastSerial import Arduino, Servo from time import sleep from tflearn.layers.conv import conv_2d, max_pool_2d from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.estimator import regression import numpy as np from PIL import Image import cv2 import imutils # global variables bg = None board = Arduino("/dev/ttyACM0") servol = Servo(board, "8") servor = Servo(board, "9") servom = Servo(board, "10") servoi = Servo(board, "11") servot = Servo(board, "12") def resizeImage(imageName): basewidth = 100 img = Image.open(imageName) wpercent = (basewidth / float(img.size[0])) hsize = int((float(img.size[1]) * float(wpercent))) img = img.resize((basewidth, hsize), Image.ANTIALIAS) img.save(imageName)