コード例 #1
0
def run_calc_W126(outfile,
                  attr_in,
                  fileh,
                  filet,
                  year,
                  smo,
                  emo,
                  *,
                  lyyyyjjj=True,
                  tzone=None):

    # Include functions to call
    from CAMxtools.tzone.scan_timezones import scan_timezones
    from CAMxtools.W126.calc_W126 import calc_W126
    import numpy as np

    # Check arguments
    l1tzone = False
    if tzone != None:
        l1tzone = True  # If users specify a specific time zone, W126 is calculated based on the time zone.

    # Scan time zone over the domain
    tzfile = None
    dum, tzone_stlji = scan_timezones(tzfile, attr_in, loutf=False)
    tzone_ji = tzone_stlji[0, 0, 0, :, :].astype(np.int)
    tzones = np.unique(tzone_ji)
    if l1tzone:
        print("A SINGLE TIMEZONE, {} will be applied".format(tzone))
        if tzone in tzones:
            ny = attr_in['NROWS']
            nx = attr_in['NCOLS']
            tzone_ji = np.zeros((ny, nx)).astype(np.int) + tzone
            tzones = [tzone]
        else:
            exit("YOUR TIMEZONE SPECIFIED IS OUT OF DOMAIN")

    # Calculate W126 per each time zone
    calc_W126(outfile,
              fileh,
              filet,
              year,
              smo,
              emo,
              tzone_ji,
              lyyyyjjj=lyyyyjjj,
              lverbose=False)
コード例 #2
0
ファイル: hxmdaz_naaqs.py プロジェクト: jaegunjung/CAMxtools
def hxmdaz_naaqs(jdbeg,
                 jdend,
                 outfile,
                 csvfile,
                 comb,
                 attr_in,
                 nifiles,
                 infile_h,
                 infile_t,
                 *,
                 avg_hr=8,
                 rank=4,
                 lyyyyjjj=True,
                 tzone=None,
                 l2uam=False,
                 lnew_mda8=False,
                 tmpoutf=None):
    # Include functions
    from CAMxtools.combine.combine import combine
    import netCDF4 as ncdf4
    from PseudoNetCDF.camxfiles.Memmaps import uamiv
    from CAMxtools.write.set_attr import set_attr
    from CAMxtools.tzone.scan_timezones import scan_timezones
    from CAMxtools.tzone.get_local_hrs import get_mda1s
    from CAMxtools.tzone.get_local_hrs import get_mda8
    from CAMxtools._cnvt._data2fin import _data2fin
    from CAMxtools.write.wrt_ioapi import wrt_ioapi
    from CAMxtools.write.wrt_uamiv import wrt_uamiv
    from CAMxtools.write.wrt_uamiv import wrt_uamiv
    from CAMxtools.write.wrt_uamiv import wrt_uamiv
    from CAMxtools.write.wrt_uamiv import wrt_uamiv
    from CAMxtools.write.wrt_uamiv import wrt_uamiv
    from CAMxtools.naaqs.wrt_csv_for_naaqs import wrt_csv_for_naaqs
    import numpy as np
    import gc

    # Check arguments
    l1tzone = False
    if tzone != None:
        l1tzone = True  # If users specify a specific time zone, MATS MDA8 O3 is calculated based on the time zone.

    # Scan time zone over the domain
    tzfile = None
    dum, tzone_stlji = scan_timezones(tzfile, attr_in, loutf=False)
    tzone_ji = tzone_stlji[0, 0, 0, :, :].astype(np.int)
    tzones = np.unique(tzone_ji)
    if l1tzone:
        print("A SINGLE TIMEZONE, {} will be applied".format(tzone))
        if tzone in tzones:
            ny = attr_in['NROWS']
            nx = attr_in['NCOLS']
            tzone_ji = np.zeros((ny, nx)).astype(np.int) + tzone
            tzones = [tzone]
        else:
            exit("YOUR TIMEZONE SPECIFIED IS OUT OF DOMAIN")

    # Get attribute
    nx = attr_in['NCOLS']
    ny = attr_in['NROWS']

    # Set a variable name
    spec = "O3"

    # Daily loop
    jdate = jdbeg
    while (jdate <= jdend):
        print("Processing {}".format(jdate))
        gdate = int(
            datetime.datetime.strptime(str(jdate), "%Y%j").strftime("%Y%m%d"))
        infile = []
        for ifile in range(0, nifiles):
            if lyyyyjjj:
                infile.append(infile_h[ifile] + '.' + str(jdate) + '.' +
                              infile_t[ifile])
            else:
                infile.append(infile_h[ifile] + '.' + str(gdate) + '.' +
                              infile_t[ifile])
        print("  1. PROCESSING COMBINE")
        tracernames, indata2, ovarunits = combine(None,
                                                  comb,
                                                  nifiles,
                                                  infile,
                                                  lverbose=False,
                                                  loutf=False,
                                                  lovarunits=True)
        if (jdate > jdbeg):
            # One time execution - Check 'O3' is the first output species and index output trcnames which excludes O3 from tracernames
            if jdate == jdbeg + 1:
                s = tracernames.index(spec)
                if s != 0:
                    exit('O3 must be the first species in combine spec_def')
                ntracers = len(tracernames)
                trcnames = tracernames[1:]
            print("  2. PROCESSING METRICS FOR PREVIOUS DAY")
            concs_48_utc = np.append(indata1[:, :, 0, :, :],
                                     indata2[:, :, 0, :, :],
                                     axis=1)
            conc_o3_48_utc = concs_48_utc[
                np.newaxis,
                s, :, :, :]  #concs_48_utc[nspc,nt,ny,nx], conc_o3_48_utc[1,nt,ny,nx]
            if avg_hr == 1:
                dmdaz_1day, dind_hr_1day = get_mda1(
                    conc_o3_48_utc, tzone_ji, nx,
                    ny)  # dmda1_1day[1,ny,nx], dind_hr_1day[1,ny,nx]
            elif avg_hr == 8:
                dmdaz_1day, dind_hr_1day = get_mda8(
                    conc_o3_48_utc, tzone_ji, nx, ny, lnew_mda8=lnew_mda8
                )  # dmda1_1day[1,ny,nx], dind_hr_1day[1,ny,nx]
            else:
                exit("avg_hr must be either 1 or 8.")
            # Set trcs_dmdaz_1day
            trcs_dmdaz_1day = np.zeros((ntracers - 1, ny, nx))
            for i in range(nx):
                for j in range(ny):
                    if avg_hr == 1:
                        trcs_dmdaz_1day[:, j, i] = concs_48_utc[
                            1:, np.squeeze(dind_hr_1day)[j, i], j, i]
                    elif avg_hr == 8:
                        trcs_daz_1day_1cell = np.apply_along_axis(
                            np.convolve,
                            axis=1,
                            arr=concs_48_utc[1:,
                                             tzone_ji[j,
                                                      i]:tzone_ji[j, i] + 31,
                                             j, i],
                            v=[1 / 8.] * 8,
                            mode='valid')  #trcs_daz_1day_1cell[nspc-1,24]
                        trcs_dmdaz_1day[:, j,
                                        i] = trcs_daz_1day_1cell[:,
                                                                 np.squeeze(
                                                                     dind_hr_1day
                                                                 )[j, i]]
                    else:
                        exit("avg_hr must be either 1 or 8.")
                gc.collect()
            if jdate == jdbeg + 1:
                dmdazs = dmdaz_1day  #dmdazs[nd,ny,nx]
                dind_hrs = dind_hr_1day  #dind_hrs[nd,ny,nx]
                trcs_dmdazs = np.array([trcs_dmdaz_1day
                                        ])  #trcs_dmdazs[nd,nspc-1,ny,nx]
            if jdate > jdbeg + 1:
                dmdazs = np.append(dmdazs, dmdaz_1day, axis=0)
                dind_hrs = np.append(dind_hrs, dind_hr_1day, axis=0)
                trcs_dmdazs = np.append(trcs_dmdazs,
                                        np.array([trcs_dmdaz_1day]),
                                        axis=0)
        indata1 = indata2
        jdate = int((datetime.datetime.strptime(str(jdate), "%Y%j") +
                     datetime.timedelta(days=1)).strftime("%Y%j"))
        gc.collect()
    del indata2
    del indata1
    gc.collect()

    # Prepare MDAZ if asked
    lout_mdaz = False
    if not tmpoutf == None: lout_mdaz = True
    if lout_mdaz:
        nd = jdend - jdbeg
        data2sav = np.zeros((ntracers, nd, 1, ny, nx))
        data2sav[0, :, 0, :, :] = dmdazs
        data2sav[1:, :, 0, :, :] = np.einsum('jikl->ijkl', trcs_dmdazs)
        # Write a binary file for MDAZ
        attr_in['TSTEP'] = 240000
        fout = _data2fin(data2sav, tracernames, attr_in)
        if l2uam:
            wrt_uamiv(tmpoutf, fout, lsurf=True, ounits=ovarunits)
        else:
            wrt_ioapi(tmpoutf, fout, lsurf=True, ounits=ovarunits)
        gc.collect()

    # Find X highest
    if rank == 1:
        rank_name = "FIRST"
    elif rank == 4:
        rank_name = "FOURTH"
    elif rank == 0:
        rank_name = "AVERAGE"
    else:
        exit("rank must be either 1 or 4 or 0.")
    if rank == 0:
        print("  3. PROCESSING AVERAGE")
    else:
        print("  3. PROCESSING {} HIGHEST".format(rank_name))
    data2sav = np.zeros((ntracers, 1, 1, ny, nx))
    nd = jdend - jdbeg
    if (nd < rank):
        print('Your no. of days is less than the rank you specified.')
        print('No. of days from input files = {}'.format(nd))
        print('Rank you select is = {}'.format(rank))
        exit(
            'Either reduce your rank or increase no. of days from input files')
    if rank == 0:
        data2sav[0, 0, 0, :, :] = np.mean(
            dmdazs, axis=0)  #data2sav[nspc,nt,nz,ny,nx], dmdazs[nd,ny,nx]
        data2sav[1:, 0,
                 0, :, :] = np.mean(trcs_dmdazs,
                                    axis=0)  #trcs_dmdazs[nd,nspc-1,ny,nx]
    else:
        ind = np.argsort(dmdazs, axis=0)[nd - rank,
                                         ...]  #dmdazs[nd,ny,nx], ind[ny,nx]
        gr = np.ogrid[0:dmdazs.shape[0], 0:dmdazs.shape[1], 0:dmdazs.shape[2]]
        gr[0] = ind
        data2sav[0, 0, 0, :, :] = dmdazs[gr]  #data2sav[nspc,nt,nz,ny,nx]
        for i in range(nx):
            for j in range(ny):
                data2sav[1:, 0, 0, j, i] = trcs_dmdazs[ind[j, i], :, j, i]
    # Write a csv file
    if rank == 0:
        jdays = np.zeros(
            (ny,
             nx)) + attr_in['SDATE']  # Average of MDAZ, set the beginning date
        hours = np.zeros((ny, nx))  # Average of MDAZ, set zeros.
    else:
        jdays = attr_in['SDATE'] + ind[:, :]
        hours = np.zeros(
            (ny, nx)) + dind_hrs[gr][0, :, :]  #dind_hrs[gr].shape = (1,ny,nx)
    data2csv = np.zeros((ntracers, ny, nx))
    data2csv = data2sav[:, 0, 0, :, :]
    wrt_csv_for_naaqs(csvfile, tracernames, data2csv, jdays, hours)
    gc.collect()
    # Write a binary file for HXMDAZ
    fout = _data2fin(data2sav, tracernames, attr_in)
    if l2uam:
        wrt_uamiv(outfile, fout, lsurf=True, ounits=ovarunits)
    else:
        wrt_ioapi(outfile, fout, lsurf=True, ounits=ovarunits)
    gc.collect()
コード例 #3
0
ファイル: hxmdaz.py プロジェクト: jaegunjung/CAMxtools
def hxmdaz(jdbeg,jdend,outfile,comb,attr_in,nifiles,infile_h,infile_t,*,avg_hr=8,rank=4,lyyyyjjj=True,tzone=None,l2uam=False,lnew_mda8=False,tmpoutf=None):
    # Include functions
    from CAMxtools.combine.combine import combine
    import netCDF4 as ncdf4
    from PseudoNetCDF.camxfiles.Memmaps import uamiv
    from CAMxtools.write.set_attr import set_attr
    from CAMxtools.tzone.scan_timezones import scan_timezones
    from CAMxtools.tzone.get_local_hrs import get_mda1s
    from CAMxtools.tzone.get_local_hrs import get_mda8s
    from CAMxtools.tzone.get_local_hrs import get_mda8s_a0
    from CAMxtools._cnvt._data2fin import _data2fin
    from CAMxtools.write.wrt_ioapi import wrt_ioapi
    from CAMxtools.write.wrt_uamiv import wrt_uamiv
    import numpy as np

    # Check arguments
    l1tzone = False
    if tzone != None: l1tzone = True # If users specify a specific time zone, MATS MDA8 O3 is calculated based on the time zone.

    # Scan time zone over the domain
    tzfile = None
    dum, tzone_stlji = scan_timezones(tzfile, attr_in, loutf = False)
    tzone_ji = tzone_stlji[0,0,0,:,:].astype(np.int)
    tzones = np.unique(tzone_ji)
    if l1tzone:
      print("A SINGLE TIMEZONE, {} will be applied".format(tzone))
      if tzone in tzones:
        ny = attr_in['NROWS']
        nx = attr_in['NCOLS']
        tzone_ji = np.zeros((ny,nx)).astype(np.int) + tzone
        tzones = [tzone]
      else:
        exit("YOUR TIMEZONE SPECIFIED IS OUT OF DOMAIN")

    # Get attribute
    nx  = attr_in['NCOLS']
    ny  = attr_in['NROWS']

    # Set a variable name 
    spec = "O3"

    # Daily loop
    print ("  1. PROCESSING COMBINE")
    jdate = jdbeg
    while (jdate <= jdend):
      print ("Processing {}".format(jdate))
      gdate = int(datetime.datetime.strptime(str(jdate),"%Y%j").strftime("%Y%m%d"))
      infile = []
      for ifile in range(0,nifiles):
        if lyyyyjjj:
          infile.append(infile_h[ifile]+'.'+str(jdate)+'.'+infile_t[ifile])
        else:
          infile.append(infile_h[ifile]+'.'+str(gdate)+'.'+infile_t[ifile])
      tracernames, indata, ovarunits = combine(None,comb,nifiles,infile,lverbose=False,loutf=False,lovarunits=True)
      s = tracernames.index(spec)
      if jdate == jdbeg : conc_hrs_utc = indata[s,:,0,:,:]
      if jdate > jdbeg  : conc_hrs_utc = np.append(conc_hrs_utc,indata[s,:,0,:,:],axis=0) #As len(s) = 1, the 2nd dimension, nt is axis=0
      jdate = int((datetime.datetime.strptime(str(jdate),"%Y%j") + datetime.timedelta(days=1)).strftime("%Y%j"))
    del indata
    print ("  2. PROCESSING MDA{} FOR ALL DAYS".format(avg_hr))
    nd = jdend - jdbeg
    if avg_hr == 1:
      mdaz = get_mda1s(conc_hrs_utc, tzone_ji, nd, nx, ny)
    elif avg_hr == 8:
      if lnew_mda8:
        mdaz = get_mda8s_a0(conc_hrs_utc, tzone_ji, nd, nx, ny)
      else:
        mdaz = get_mda8s(conc_hrs_utc, tzone_ji, nd, nx, ny)
    else:
      exit("avg_hr must be either 1 or 8.")

    # Prepare MDAZ if asked
    lout_mdaz = False
    if not tmpoutf == None: lout_mdaz = True
    if lout_mdaz:
      data2sav = np.zeros((1,nd,1,ny,nx))
      data2sav[0,:,0,:,:] = mdaz
      # Write a binary file for MDAZ
      attr_in['TSTEP']=240000
      fout = _data2fin(data2sav, tracernames, attr_in)
      if l2uam:
        wrt_uamiv(tmpoutf, fout, lsurf = True, ounits = ovarunits)
      else:
        wrt_ioapi(tmpoutf, fout, lsurf = True, ounits = ovarunits)

    # Find X highest
    if rank == 1:
      rank_name = "FIRST"
    elif rank == 4:
      rank_name = "FOURTH"
    else:
      exit("rank must be either 1 or 4.")
    print ("  3. PROCESSING {} HIGHEST".format(rank_name))
    data2sav = np.zeros((1,1,1,ny,nx))
    data2sav[0,0,0,:,:] = np.sort(mdaz,axis=0)[mdaz.shape[0]-rank,...] #data2sav[nspc,nt,nz,ny,nx]

    # Write a binary file for HXMDAZ
    fout = _data2fin(data2sav, tracernames, attr_in)
    if l2uam:
      wrt_uamiv(outfile, fout, lsurf = True, ounits = ovarunits)
    else:
      wrt_ioapi(outfile, fout, lsurf = True, ounits = ovarunits)
コード例 #4
0
def psd_pm10_2nddavg_annavg(jdbeg,
                            jdend,
                            out_anndavg,
                            out_2nddavg,
                            csv_anndavg,
                            csv_2nddavg,
                            comb,
                            attr_in,
                            nifiles,
                            infile_h,
                            infile_t,
                            *,
                            lyyyyjjj=True,
                            tzone=None,
                            l2uam=False,
                            tmpoutf=None):
    # Include functions
    from CAMxtools.combine.combine import combine
    import netCDF4 as ncdf4
    from PseudoNetCDF.camxfiles.Memmaps import uamiv
    from CAMxtools.write.set_attr import set_attr
    from CAMxtools.tzone.scan_timezones import scan_timezones
    from CAMxtools.tzone.get_local_hrs import get_davg
    from CAMxtools._cnvt._data2fin import _data2fin
    from CAMxtools.write.wrt_ioapi import wrt_ioapi
    from CAMxtools.write.wrt_uamiv import wrt_uamiv
    from CAMxtools.psd.wrt_csv_for_psd import wrt_csv_for_psd
    import numpy as np

    # Check arguments
    l1tzone = False
    if tzone != None:
        l1tzone = True  # If users specify a specific time zone, MATS MDA8 O3 is calculated based on the time zone.

    # Scan time zone over the domain
    tzfile = None
    dum, tzone_stlji = scan_timezones(tzfile, attr_in, loutf=False)
    tzone_ji = tzone_stlji[0, 0, 0, :, :].astype(np.int)
    tzones = np.unique(tzone_ji)
    if l1tzone:
        print("A SINGLE TIMEZONE, {} will be applied".format(tzone))
        if tzone in tzones:
            ny = attr_in['NROWS']
            nx = attr_in['NCOLS']
            tzone_ji = np.zeros((ny, nx)).astype(np.int) + tzone
            tzones = [tzone]
        else:
            exit("YOUR TIMEZONE SPECIFIED IS OUT OF DOMAIN")

    # Get attribute
    nx = attr_in['NCOLS']
    ny = attr_in['NROWS']

    # Daily loop
    jdate = jdbeg
    while (jdate <= jdend):
        print("Processing {}".format(jdate))
        gdate = int(
            datetime.datetime.strptime(str(jdate), "%Y%j").strftime("%Y%m%d"))
        infile = []
        for ifile in range(0, nifiles):
            if lyyyyjjj:
                infile.append(infile_h[ifile] + '.' + str(jdate) + '.' +
                              infile_t[ifile])
            else:
                infile.append(infile_h[ifile] + '.' + str(gdate) + '.' +
                              infile_t[ifile])
        print("  1. PROCESSING COMBINE")
        tracernames, indata2, ovarunits = combine(None,
                                                  comb,
                                                  nifiles,
                                                  infile,
                                                  lverbose=False,
                                                  loutf=False,
                                                  lovarunits=True)
        if (jdate > jdbeg):
            print("  2. PROCESSING DAILY AVERAGE FOR PREVIOUS DAY")
            concs_48_utc = np.append(indata1[:, :, 0, :, :],
                                     indata2[:, :, 0, :, :],
                                     axis=1)
            davg_1day = get_davg(concs_48_utc, tzone_ji, nx, ny)
            if jdate == jdbeg + 1:
                davgs = np.array([davg_1day])  #davgs[nd,nspc,ny,nx]
            if jdate > jdbeg + 1:
                davgs = np.append(davgs, np.array([davg_1day]), axis=0)
        indata1 = indata2
        jdate = int((datetime.datetime.strptime(str(jdate), "%Y%j") +
                     datetime.timedelta(days=1)).strftime("%Y%j"))
    del indata2
    del indata1

    # Prepare DAVG if asked
    nspc = len(tracernames)
    lout_davg = False
    if not tmpoutf == None: lout_davg = True
    if lout_davg:
        nd = jdend - jdbeg
        data2sav = np.zeros((nspc, nd, 1, ny, nx))
        for ispc in range(nspc):
            data2sav[ispc, :, 0, :, :] = davgs[:, ispc, :, :]
        # Write a binary file for DAVG
        attr_in['TSTEP'] = 240000
        fout = _data2fin(data2sav, tracernames, attr_in)
        if l2uam:
            wrt_uamiv(tmpoutf, fout, lsurf=True, ounits=ovarunits)
        else:
            wrt_ioapi(tmpoutf, fout, lsurf=True, ounits=ovarunits)

    # Calculate 2nd highest daily average
    print("  3. PROCESSING 2ND HIGHEST DAILY AVERAGE")
    data2sav = np.zeros((nspc, 1, 1, ny, nx))
    rank = 2
    #data2sav[:,0,0,:,:] = np.sort(davgs,axis=0)[davgs.shape[0]-rank,...] #data2sav[nspc,nt,nz,ny,nx], davgs[nd,nspc,ny,nx]
    ind = np.argsort(davgs, axis=0)[
        davgs.shape[0] - rank,
        ...]  #data2sav[nspc,nt,nz,ny,nx], davgs[nd,nspc,ny,nx], ind[nsp,ny,nx]
    gr = np.ogrid[0:davgs.shape[0], 0:davgs.shape[1], 0:davgs.shape[2],
                  0:davgs.shape[3]]
    gr[0] = ind
    data2sav[:, 0, 0, :, :] = davgs[gr]
    #data2sav[:,0,0,:,:] = np.mean(davgs,axis=0) #data2sav[nspc,nt,nz,ny,nx], davgs[nd,nspc,ny,nx]
    # Write a csv file
    jdays = attr_in['SDATE'] + ind[
        0, :, :]  # Annual average, set the beginning date
    hours = np.zeros((ny, nx))  # daily average, set zeros
    data2csv = np.zeros((nspc, ny, nx))
    data2csv = data2sav[:, 0, 0, :, :]
    wrt_csv_for_psd(csv_2nddavg, tracernames, data2csv, jdays, hours)
    # Write a binary file
    fout = _data2fin(data2sav, tracernames, attr_in)
    if l2uam:
        wrt_uamiv(out_2nddavg, fout, lsurf=True, ounits=ovarunits)
    else:
        wrt_ioapi(out_2nddavg, fout, lsurf=True, ounits=ovarunits)

    # Calculate grand average
    print("  4. PROCESSING GRAND AVERAGE")
    data2sav = np.zeros((nspc, 1, 1, ny, nx))
    data2sav[:, 0, 0, :, :] = np.mean(
        davgs, axis=0)  #data2sav[nspc,nt,nz,ny,nx], davgs[nd,nspc,ny,nx]
    # Write a csv file
    jdays = np.zeros(
        (ny, nx)) + attr_in['SDATE']  # Annual average, set the beginning date
    hours = np.zeros((ny, nx))  # Annual average, set zeros
    data2csv = np.zeros((nspc, ny, nx))
    data2csv = data2sav[:, 0, 0, :, :]
    wrt_csv_for_psd(csv_anndavg, tracernames, data2csv, jdays, hours)
    # Write a binary file
    fout = _data2fin(data2sav, tracernames, attr_in)
    if l2uam:
        wrt_uamiv(out_anndavg, fout, lsurf=True, ounits=ovarunits)
    else:
        wrt_ioapi(out_anndavg, fout, lsurf=True, ounits=ovarunits)
コード例 #5
0
ファイル: prep_pm_mats.py プロジェクト: jaegunjung/CAMxtools
def prep_pm_mats(jdbeg,jdend,outfile,comb,attr_in,nifiles,infile_h,infile_t,*,lyyyyjjj=True,tzone=None,lno_edges=True,convfac=1.):
    # Include functions
    from CAMxtools.combine.combine import combine
    import netCDF4 as ncdf4
    from PseudoNetCDF.camxfiles.Memmaps import uamiv
    from CAMxtools.write.set_attr import set_attr
    from CAMxtools.tzone.scan_timezones import get_lcc
    from CAMxtools.regrid.projection import ll2latlon
    from CAMxtools.regrid.projection import lcp2latlon
    from CAMxtools.tzone.scan_timezones import scan_timezones
    from CAMxtools.tzone.get_local_hrs import get_davg
    from CAMxtools.MATS.wrt_csv_for_pm_mats import wrt_csv_for_pm_mats
    import numpy as np

    # Check arguments
    l1tzone = False
    if tzone != None: l1tzone = True # If users specify a specific time zone, MATS MDA8 O3 is calculated based on the time zone.

    # Scan time zone over the domain
    tzfile = None
    dum, tzone_stlji = scan_timezones(tzfile, attr_in, loutf = False)
    tzone_ji = tzone_stlji[0,0,0,:,:].astype(np.int)
    tzones = np.unique(tzone_ji)
    if l1tzone:
      print("A SINGLE TIMEZONE, {} will be applied".format(tzone))
      if tzone in tzones:
        ny = attr_in['NROWS']
        nx = attr_in['NCOLS']
        tzone_ji = np.zeros((ny,nx)).astype(np.int) + tzone
        tzones = [tzone]
      else:
        exit("YOUR TIMEZONE SPECIFIED IS OUT OF DOMAIN")

    # Get attribute
    dxy = attr_in['XCELL']
    nx  = attr_in['NCOLS']
    ny  = attr_in['NROWS']
    x0 = attr_in['XORIG']
    y0 = attr_in['YORIG']

    # Get lat and lon at the center of grid cells
    if attr_in['GDTYP'] == 1:
      lats, lons = ll2latlon (x0, y0, dxy, nx, ny, lno_edges = lno_edges)
    elif attr_in['GDTYP'] == 2:
      lcc = get_lcc(attr_in)
      lats, lons = lcp2latlon (lcc, dxy, nx, ny, lno_edges = lno_edges)
    else:
      print("Your GDTYP is {}".format(attr_in['GDTYP']))
      exit("This program currently supports LATLON (GDTYP = 1) and LCP (GDTYP = 2) only.")

    # Daily loop
    jdays = []
    jdate = jdbeg
    while (jdate <= jdend):
      jdays.append(jdate)
      print ("Processing {}".format(jdate))
      gdate = int(datetime.datetime.strptime(str(jdate),"%Y%j").strftime("%Y%m%d"))
      infile = []
      for ifile in range(0,nifiles):
        if lyyyyjjj:
          infile.append(infile_h[ifile]+'.'+str(jdate)+'.'+infile_t[ifile])
        else:
          infile.append(infile_h[ifile]+'.'+str(gdate)+'.'+infile_t[ifile])
      print ("  1. PROCESSING COMBINE")
      tracernames, indata2 = combine(None,comb,nifiles,infile,lverbose=False,loutf=False)
      if (jdate > jdbeg):
        print ("  2. PROCESSING DAILY AVERAGE FOR PREVIOUS DAY")
        concs_48_utc = np.append(indata1[:,:,0,:,:],indata2[:,:,0,:,:],axis=1)
        davg_1day = get_davg(concs_48_utc, tzone_ji, nx, ny)
        if jdate == jdbeg + 1: davgs = np.array([davg_1day]) #davgs[nd,nspc,ny,nx]
        if jdate > jdbeg + 1: davgs = np.append(davgs,np.array([davg_1day]),axis=0)
      indata1 = indata2
      jdate = int((datetime.datetime.strptime(str(jdate),"%Y%j") + datetime.timedelta(days=1)).strftime("%Y%j"))
    del indata2
    del indata1
    
    # Exclude buffer cells if needed
    if lno_edges:
      davgs_chked  = davgs[:,:,1:-1,1:-1]
    else:
      davgs_chked  = davgs

    # Write csv file
    wrt_csv_for_pm_mats(outfile,davgs_chked,jdays,lats,lons,tracernames,convfac)
コード例 #6
0
ファイル: prep_o3_mats.py プロジェクト: jaegunjung/CAMxtools
def prep_o3_mats(jdbeg,
                 jdend,
                 outfile,
                 comb,
                 attr_in,
                 nifiles,
                 infile_h,
                 infile_t,
                 *,
                 lyyyyjjj=True,
                 tzone=None,
                 lno_edges=True,
                 convfac=1000.,
                 lnew_mda8=False):
    # Include functions
    from CAMxtools.combine.combine import combine
    import netCDF4 as ncdf4
    from PseudoNetCDF.camxfiles.Memmaps import uamiv
    from CAMxtools.write.set_attr import set_attr
    from CAMxtools.tzone.scan_timezones import get_lcc
    from CAMxtools.regrid.projection import ll2latlon
    from CAMxtools.regrid.projection import lcp2latlon
    from CAMxtools.tzone.scan_timezones import scan_timezones
    from CAMxtools.tzone.get_local_hrs import get_mda8s
    from CAMxtools.tzone.get_local_hrs import get_mda8s_a0
    from CAMxtools.MATS.wrt_csv_for_o3_mats import wrt_csv_for_o3_mats
    import numpy as np

    # Check arguments
    l1tzone = False
    if tzone != None:
        l1tzone = True  # If users specify a specific time zone, MATS MDA8 O3 is calculated based on the time zone.

    # Scan time zone over the domain
    tzfile = None
    dum, tzone_stlji = scan_timezones(tzfile, attr_in, loutf=False)
    tzone_ji = tzone_stlji[0, 0, 0, :, :].astype(np.int)
    tzones = np.unique(tzone_ji)
    if l1tzone:
        print("A SINGLE TIMEZONE, {} will be applied".format(tzone))
        if tzone in tzones:
            ny = attr_in['NROWS']
            nx = attr_in['NCOLS']
            tzone_ji = np.zeros((ny, nx)).astype(np.int) + tzone
            tzones = [tzone]
        else:
            exit("YOUR TIMEZONE SPECIFIED IS OUT OF DOMAIN")

    # Get attribute
    dxy = attr_in['XCELL']
    nx = attr_in['NCOLS']
    ny = attr_in['NROWS']
    x0 = attr_in['XORIG']
    y0 = attr_in['YORIG']

    # Get lat and lon at the center of grid cells
    if attr_in['GDTYP'] == 1:
        lats, lons = ll2latlon(x0, y0, dxy, nx, ny, lno_edges=lno_edges)
    elif attr_in['GDTYP'] == 2:
        lcc = get_lcc(attr_in)
        lats, lons = lcp2latlon(lcc, dxy, nx, ny, lno_edges=lno_edges)
    else:
        print("Your GDTYP is {}".format(attr_in['GDTYP']))
        exit(
            "This program currently supports LATLON (GDTYP = 1) and LCP (GDTYP = 2) only."
        )

    # Set a variable name
    spec = "O3"

    # Daily loop
    print("  1. PROCESSING COMBINE")
    jdays = []
    jdate = jdbeg
    while (jdate <= jdend):
        jdays.append(jdate)
        print("Processing {}".format(jdate))
        gdate = int(
            datetime.datetime.strptime(str(jdate), "%Y%j").strftime("%Y%m%d"))
        infile = []
        for ifile in range(0, nifiles):
            if lyyyyjjj:
                infile.append(infile_h[ifile] + '.' + str(jdate) + '.' +
                              infile_t[ifile])
            else:
                infile.append(infile_h[ifile] + '.' + str(gdate) + '.' +
                              infile_t[ifile])
        tracernames, indata = combine(None,
                                      comb,
                                      nifiles,
                                      infile,
                                      lverbose=False,
                                      loutf=False)
        s = tracernames.index(spec)
        if jdate == jdbeg: conc_hrs_utc = indata[s, :, 0, :, :]
        if jdate > jdbeg:
            conc_hrs_utc = np.append(
                conc_hrs_utc, indata[s, :, 0, :, :],
                axis=0)  #As len(s) = 1, the 2nd dimension, nt is axis=0
        jdate = int((datetime.datetime.strptime(str(jdate), "%Y%j") +
                     datetime.timedelta(days=1)).strftime("%Y%j"))
    del indata
    print("  2. PROCESSING MDA8 FOR ALL DAYS")
    nd = jdend - jdbeg
    if lnew_mda8:
        mda8 = get_mda8s_a0(conc_hrs_utc, tzone_ji, nd, nx, ny)
    else:
        mda8 = get_mda8s(conc_hrs_utc, tzone_ji, nd, nx, ny)

    # Exclude buffer cells if needed
    if lno_edges:
        mda8_chked = mda8[:, 1:-1, 1:-1]
    else:
        mda8_chked = mda8

    # Write csv file
    wrt_csv_for_o3_mats(outfile, mda8_chked, jdays, lats, lons, convfac)
コード例 #7
0
def get_vis_at_cells(jdbeg,
                     jdend,
                     outf_ddv,
                     outf_cnt,
                     xref,
                     comb,
                     nifiles,
                     infile_h,
                     infile_t,
                     class_lst,
                     *,
                     lyyyyjjj=True,
                     tzone=None,
                     attr_in=None):

    # Include functions to call
    import numpy as np
    from CAMxtools.vis.maxvis_temporal import maxvis_temporal
    from CAMxtools.vis.count_temporal import count_temporal
    from CAMxtools.vis.day_loop_for_vis import day_loop_for_vis
    from CAMxtools.tzone.scan_timezones import scan_timezones

    # Check arguments
    l1tzone = False
    if tzone != None:
        l1tzone = True  # If users specify a specific time zone, vis is calculated based on the time zone.
        if attr_in == None:
            exit(
                "When tzone is None, i.e auto-tzone, attr_in must not be None")

    # Scan time zone over the domain
    tzfile = None
    dum, tzone_stlji = scan_timezones(tzfile, attr_in, loutf=False)
    tzone_ji = tzone_stlji[0, 0, 0, :, :].astype(np.int)
    tzones = np.unique(tzone_ji)
    if l1tzone:
        print("A SINGLE TIMEZONE, {} will be applied".format(tzone))
        if tzone in tzones:
            ny = attr_in['NROWS']
            nx = attr_in['NCOLS']
            tzone_ji = np.zeros((ny, nx)).astype(np.int) + tzone
            tzones = [tzone]
        else:
            exit("YOUR TIMEZONE SPECIFIED IS OUT OF DOMAIN")

    # Run for a year looping by day
    allday_visf = "allday_visf.csv"
    day_loop_for_vis(jdbeg,
                     jdend,
                     allday_visf,
                     xref,
                     comb,
                     nifiles,
                     infile_h,
                     infile_t,
                     class_lst,
                     lyyyyjjj=True,
                     tzone=tzone_ji)

    # Process and report DDV of max, 8th, W20%, B20%, and min at each class 1 or 2
    maxvis_temporal(allday_visf, outf_ddv)

    # Process and report no. of days whose DDV is larger than 0.5 or 1 at each class 1 or 2
    count_temporal(allday_visf, outf_cnt)

    # Remove the csv file that has annual visiblity results
    os.remove(allday_visf)
コード例 #8
0
def main():
    # Include functions to call
    import netCDF4 as ncdf4
    from PseudoNetCDF.camxfiles.Memmaps import uamiv
    from CAMxtools.write.set_attr import set_attr
    from CAMxtools.tzone.scan_timezones import scan_timezones
    import datetime

    # CHECK USER INPUTS
    # Check TZONE environment variables
    try:
        tzone = int(os.environ['TIMEZONE'])
    except:
        tzone = None
    # Check TZONE environment variables
    try:
        tzfile = str(os.environ['TZFILE'])
    except:
        tzfile = None
    # If a user specified a time zone, do not use tzfile.
    if not tzone == None:
        tzfile = None  # If a user specified a time zone, do not use tzfile.
    # Arguments
    outfile = str(sys.argv[1])
    infile1 = str(sys.argv[2])
    infile2 = str(sys.argv[3])
    xref = str(sys.argv[4])

    # Begin the script
    try:
        fin1 = uamiv(infile1)
        fin2 = uamiv(infile2)
    except:
        try:
            fin1 = ncdf4.Dataset(infile1)
            fin2 = ncdf4.Dataset(infile2)
        except:
            print("Unrecognized file type")
            print("infile1 = {}".format(infile1))
            print("infile2 = {}".format(infile2))
            exit()
    tracernames = list(fin1.variables.keys())
    tracernames.remove('TFLAG')

    nx = len(fin1.dimensions['COL'])
    ny = len(fin1.dimensions['ROW'])
    nx2 = len(fin2.dimensions['COL'])
    ny2 = len(fin2.dimensions['ROW'])
    if (nx != nx2) or (ny != ny2):
        print("infile1 and infile2 have different no. of columns or rows")
        print("infile1 x = {}, y = {}".format(nx, ny))
        print("infile2 x = {}, y = {}".format(nx2, ny2))
        exit()

    # Prepare tzone 2d data array
    lfin0 = True
    attr_fed = {}
    attr_in = set_attr(lfin0, fin1, attr_fed)
    l1tzone = False
    if tzone != None:
        l1tzone = True  # If users specify a specific time zone, vis is calculated based on the time zone.
    if not tzfile == None:
        print("Reading the tzfile")
        print("tzfile = {}".format(tzfile))
        ftz = ncdf4.Dataset(tzfile)
        tzone_ji = ftz.variables["TZONE"][0, 0, :, :].astype(np.int)
    else:
        # Scan time zone over the domain
        tzfile = None
        dum, tzone_stlji = scan_timezones(tzfile, attr_in, loutf=False)
        tzone_ji = tzone_stlji[0, 0, 0, :, :].astype(np.int)
        tzones = np.unique(tzone_ji)
        if l1tzone:
            print("A SINGLE TIMEZONE, {} will be applied".format(tzone))
            if tzone in tzones:
                ny = attr_in['NROWS']
                nx = attr_in['NCOLS']
                tzone_ji = np.zeros((ny, nx)).astype(np.int) + tzone
                tzones = [tzone]
            else:
                exit("YOUR TIMEZONE SPECIFIED IS OUT OF DOMAIN")

    # Set indata
    ntracers = len(tracernames)
    nt = len(fin1.dimensions['TSTEP'])
    nz = attr_in['NLAYS']
    indata1 = np.zeros((ntracers, nt, nz, ny, nx))
    indata2 = np.zeros((ntracers, nt, nz, ny, nx))
    for varname in tracernames:
        s = tracernames.index(varname)
        indata1[s, :, :, :, :] = fin1.variables[varname][:, :, :, :]
        indata2[s, :, :, :, :] = fin2.variables[varname][:, :, :, :]
    indata = np.append(indata1, indata2, axis=1)

    # Main process
    yyyyjjj = getattr(fin1, 'SDATE')
    get_davg_at_cells(tracernames,
                      indata,
                      outfile,
                      xref,
                      yyyyjjj,
                      tzone=tzone_ji)