# evaluate # load the weights from file #agent.load_state_dict(torch.load('./cem_cartpole.pth')) #agent.load_state_dict(torch.load('./cem_cartpole_5.pth')) # Path to load model from #agent.load_state_dict(torch.load('./mimic_cav_90_.pth')) num_episodes = num_eps rewards = [] for i in range(num_episodes): # data_t = [] data_d = [] start_disp = None # state = env.reset() # For Graph #env.verbose = True start_disp = env.center_state(env.current_states[0]) # reward = None t = 0 while True: with torch.no_grad(): #env.render() window.appendleft(torch.Tensor(state)) action_probs = agent(deque2state(env)).detach().numpy() action = np.argmax(action_probs) a = (env.a_max - env.a_min) * ( (action) / (agent.action_size - 1)) + env.a_min
# CAV Simulator (Generates Fake Data now) env = Simulator(num_leading_vehicle, num_following_vehicle) env.normalize = False #env.verbose = True num_episodes = num_eps rewards = [] for i in range(num_episodes): # data_t = [] data_d = [] start_disp = None # s = env.reset() # env.normalize = True start_disp = env.center_state(env.current_states[0]) env.normalize = False # done = 0 i = 0 reward = None while not done: #print(env.t) #env.render() # For graph add2loc_map(env) #print(s)
plt.xlabel("Time") plt.show() env = Simulator(num_leading_vehicle,num_following_vehicle) env.normalize = False #env.verbose = True num_episodes = num_eps results = [] for i in range(num_episodes): # data_t = [] data_d = [] start_disp = None # s = env.reset() # env.normalize = True start_disp = env.center_state(env.current_states[0]) env.normalize = False # done = 0 i = 0 reward = None while not done: #print(env.t) #env.render() # For graph add2loc_map(env) #print(s)