コード例 #1
0
    def __init__(self, options, *args, **kwargs):
        SequencePairPropertiesDistance.__init__(self, *args, **kwargs)

        self.mBaseml = WrapperCodeML.BaseML()
        self.mBaseml.SetOptions(options)

        if options.loglevel >= 3:
            self.mDump = True
            self.mTest = True
        else:
            self.mDump = False
            self.mTest = False
コード例 #2
0
ファイル: psl2table.py プロジェクト: kathrinjansen/cgat
def main(argv=None):
    """script main.

    parses command line options in sys.argv, unless *argv* is given.
    """

    if argv is None:
        argv = sys.argv

    parser = E.OptionParser(
        version=
        "%prog version: $Id: psl2table.py 2891 2010-04-07 08:59:18Z andreas $",
        usage=globals()["__doc__"])

    parser.add_option(
        "--mask-lowercase",
        dest="mask_lowercase",
        action="store_true",
        help=
        "mask lowercase characters before computing properties [default=%default]"
    )

    parser.add_option("--with-match",
                      dest="with_match",
                      action="store_true",
                      help="echo the match in output [default=%default]")

    parser.add_option(
        "--without-match",
        dest="with_match",
        action="store_false",
        help="do not echo the match in output [default=%default]")

    parser.add_option(
        "-m",
        "--method",
        dest="methods",
        type="choice",
        action="append",
        choices=("counts", "baseml", "match", "query-counts", "sbjct-counts"),
        help="methods to compute properties between sequence pairs.")

    WrapperCodeML.BaseML().AddOptions(parser)

    parser.set_defaults(
        methods=[],
        mask_lowercase=False,
        is_pslx=True,
        with_match=True,
    )

    (options, args) = E.Start(parser)

    counters_plain = []
    counters = []

    for method in options.methods:
        if method == "counts":
            counters.append(
                SequencePairProperties.SequencePairPropertiesCountsNa())
        elif method == "query-counts":
            counters.append(QueriesCounter())
        elif method == "sbjct-counts":
            counters.append(SbjctsCounter())
        elif method == "baseml":
            counters.append(
                SequencePairProperties.SequencePairPropertiesBaseML(options))
        elif method == "match":
            counters_plain.append(CounterMatch(options))

    if counters:
        iterator = Blat.iterator_pslx(options.stdin)
        header = "\t".join(Blat.MatchPSLX().getHeaders())
    else:
        iterator = Blat.iterator(options.stdin)
        header = "\t".join(Blat.Match().getHeaders())

    if not options.with_match:
        header = "qName"

    options.stdout.write(
        "\t".join([
            header,
        ] + ["\t".join(x.getHeaders()) for x in counters] +
                  ["\t".join(x.getHeaders()) for x in counters_plain]) + "\n")

    ninput, noutput, nskipped = 0, 0, 0

    for match in iterator:
        ninput += 1

        if options.with_match:
            options.stdout.write(str(match))
        else:
            options.stdout.write(match.mQueryId)

        if counters:

            qseq = match.mQuerySequence
            sseq = match.mSbjctSequence

            # mask non printable characters - sometimes
            # appear after using pslToPslX
            qseq = [re.sub("[^a-zA-Z]", "N", x) for x in qseq]
            sseq = [re.sub("[^a-zA-Z]", "N", x) for x in sseq]

            if options.mask_lowercase:
                qseq = [re.sub("[a-z]", "N", x) for x in qseq]
                sseq = [re.sub("[a-z]", "N", x) for x in sseq]

            match.mQuerySequence = qseq
            match.mSbjctSequence = sseq

            qseq = "".join(match.mQuerySequence).upper()
            sseq = "".join(match.mSbjctSequence).upper()

            if len(qseq) != len(sseq):
                if options.loglevel >= 1:
                    options.stdlog.write(
                        "# WARNING: two sequences of unequal length in match\n# %s\n"
                        % str(match))
                nskipped += 1
                continue

            for counter in counters:
                counter(qseq, sseq)

            options.stdout.write(
                "\t" + "\t".join([str(counter) for counter in counters]))

        if counters_plain:

            for counter in counters_plain:
                counter(match)

            options.stdout.write(
                "\t" + "\t".join([str(counter) for counter in counters_plain]))

        options.stdout.write("\n")

        noutput += 1

    if options.loglevel >= 1:
        options.stdlog.write("# ninput=%i, noutput=%i, nskipped=%i\n" %
                             (ninput, noutput, nskipped))

    E.Stop()
コード例 #3
0
ファイル: codeml2tsv.py プロジェクト: santayana/cgat
def main(argv=None):
    """script main.

    parses command line options in sys.argv, unless *argv* is given.
    """

    if argv is None:
        argv = sys.argv

    parser = E.OptionParser(
        version=
        "%prog version: $Id: codeml2tsv.py 2781 2009-09-10 11:33:14Z andreas $"
    )

    parser.add_option("-m",
                      "--methods",
                      dest="methods",
                      type="string",
                      help="""methods for analysis.
write-ks-tree: write out ks tree(s).
write-ka-tree: write out ka tree(s).
                      """)

    parser.add_option("--prefix",
                      dest="prefix",
                      type="string",
                      help="prefix for rows.")

    parser.add_option("--pattern-input-filenames",
                      dest="pattern_input_filenames",
                      type="string",
                      help="input pattern.")

    parser.add_option(
        "--filter-probability",
        dest="filter_probability",
        type="float",
        help="threshold for probability above which to include positive sites."
    )

    parser.add_option(
        "--filter-omega",
        dest="filter_omega",
        type="float",
        help="threshold for omega above which to include positive sites.")

    parser.add_option("--models",
                      dest="models",
                      type="string",
                      help="restrict output to set of site specific models.")

    parser.add_option("--significance-threshold",
                      dest="significance_threshold",
                      type="float",
                      help="significance threshold for log-likelihood test.")

    parser.add_option("--mode",
                      dest="mode",
                      type="choice",
                      choices=("pairs", "1xn"),
                      help="analysis mode.")

    parser.set_defaults(
        methods="",
        prefix=None,
        filter_probability=0,
        filter_omega=0,
        models="",
        significance_threshold=0.05,
        mode="pairs",
    )

    (options, args) = E.Start(parser)

    options.methods = options.methods.split(",")
    options.models = options.models.split(",")

    codeml = WrapperCodeML.CodeML()

    results = []
    if len(args) == 0:
        # read from stdin, if no arguments are given
        results.append(codeml.parseOutput(sys.stdin.readlines()))
    else:
        # read multiple results
        for f in args:
            try:
                results.append(codeml.parseOutput(open(f, "r").readlines()))
            except WrapperCodeML.ParsingError, msg:
                options.stdlog.write("# parsing error in file %s: %s.\n" %
                                     (f, msg))
                continue
コード例 #4
0
def runCodeML(mali, tree, has_non_overlaps, pairs, map_new2old, options):
    """setup codeml wrapper.

    Sets options and returns a wrapper.
    """

    ids = mali.getIdentifiers()

    ## setup codeml
    codeml_options = {}

    if options.seqtype == "codon":
        codeml_options["seqtype"] = "1"
    elif options.seqtype == "aa":
        codeml_options["seqtype"] = "2"
    elif options.seqtype == "trans":
        codeml_options["seqtype"] = "3"

    if options.clean_data:
        codeml_options["cleandata"] = options.clean_data

    if options.omega != None:
        codeml_options["omega"] = str(options.omega)

    if options.kappa != None:
        codeml_options["kappa"] = str(options.kappa)

    if options.fix_kappa:
        codeml_options["fix_kappa"] = "1"

    if options.fix_omega:
        codeml_options["fix_omega"] = "1"

    if options.codon_frequencies != None:
        c = options.codon_frequencies.upper()
        if c == "UNIFORM":
            a = "0"
        elif c == "F1X4":
            a = "1"
        elif c == "F3X4":
            a = "2"
        elif c == "F61":
            a = "3"
        else:
            a = options.codon_frequencies
        codeml_options["CodonFreq"] = a

    if options.paml_method != None:
        codeml_options["paml_method"] = str(options.method)

    if options.optimization_threshold != None:
        codeml_options["Small_Diff"] = str(options.optimization_threshold)

    ninput, noutput, nskipped = 0, 0, 0
    tstart = time.time()

    if pairs and (options.pairwise or has_non_overlaps):
        wrapper = WrapperCodeML.CodeMLPairwise()

        ## do pairwise run
        result = WrapperCodeML.CodeMLResultPairs()

        ntotal = (len(ids) * (len(ids) - 1)) / 2

        for x, y in pairs:
            m1 = mali.getSequence(ids[x])
            ninput += 1

            temp_mali = Mali.Mali()
            m2 = mali.getSequence(ids[y])

            temp_mali.addSequence(ids[x], m1.mFrom, m1.mTo, m1.mString)
            temp_mali.addSequence(ids[y], m2.mFrom, m2.mTo, m2.mString)

            ## remove empty columns and masked columns
            if options.clean_mali:
                temp_mali.mGapChars = temp_mali.mGapChars + ("n", "N")
                temp_mali.removeGaps(minimum_gaps=1, frame=3)

            if temp_mali.getWidth() < options.min_overlap:
                if options.loglevel >= 1:
                    options.stdlog.write(
                        "# pair %s-%s: not computed because only %i residues overlap\n"
                        % (mali.getEntry(ids[x]).mId, mali.getEntry(
                            ids[y]).mId, temp_mali.getWidth()))
                nskipped += 1
                continue

            sub_result = wrapper.Run(temp_mali,
                                     options=codeml_options,
                                     dump=options.dump)
            result.mPairs += sub_result.mPairs

            if options.loglevel >= 1 and ninput % options.report_step == 0:
                options.stdlog.write(
                    "# pairwise computation: %i/%i -> %i%% in %i seconds.\n" %
                    (ninput, ntotal, 100.0 * ninput / ntotal,
                     time.time() - tstart))
                options.stdlog.flush()

            noutput += printPairs(sub_result.mPairs, mali, map_new2old,
                                  options)

            options.stdout.flush()

        if options.loglevel >= 1:
            options.stdlog.write(
                "# pairwise computation: ninput=%i, noutput=%i, nskipped=%i\n"
                % (ninput, noutput, nskipped))
            options.stdlog.flush()

    else:
        wrapper = WrapperCodeML.CodeML()

        result = wrapper.Run(mali,
                             tree=tree,
                             options=codeml_options,
                             dump=options.dump)

        result_pairs = WrapperCodeML.CodeMLResultPairs()
        result_pairs.fromResult(result)
        noutput += printPairs(result_pairs.mPairs, mali, map_new2old, options)

        l = mali.getLength()
        if options.loglevel >= 1:
            options.stdlog.write("# input=%i, npairs=%i, noutput=%i\n" %
                                 (l, l *
                                  (l - 1) / 2, len(result_pairs.mPairs)))
コード例 #5
0
ファイル: codemls2tsv.py プロジェクト: yangjl/cgat
def main(argv=None):
    """script main.

    parses command line options in sys.argv, unless *argv* is given.
    """

    if argv == None: argv = sys.argv

    parser = E.OptionParser(
        version=
        "%prog version: $Id: codemls2tsv.py 2781 2009-09-10 11:33:14Z andreas $"
    )

    parser.add_option("--methods",
                      dest="methods",
                      type="choice",
                      action="append",
                      choices=("summary-numbers", "jalview",
                               "positive-site-table", "positive-site-list",
                               "count-positive-sites"),
                      help="methods for analysis.")

    parser.add_option("--selection-mode",
                      dest="selection_mode",
                      type="choice",
                      choices=("all", "consistent", "emes"),
                      help="how to select positive sites.")

    parser.add_option("--prefix",
                      dest="prefix",
                      type="string",
                      help="prefix for rows.")

    parser.add_option("--pattern-input-filenames",
                      dest="pattern_input_filenames",
                      type="string",
                      help="input pattern.")

    parser.add_option(
        "--filter-probability",
        dest="filter_probability",
        type="float",
        help=
        "threshold for probability above which to include positive sites [default=%default]."
    )

    parser.add_option(
        "--filter-omega",
        dest="filter_omega",
        type="float",
        help=
        "threshold for omega above which to include positive sites [default=%default]."
    )

    parser.add_option("--models",
                      dest="models",
                      type="string",
                      help="restrict output to set of site specific models.")

    parser.add_option("--analysis",
                      dest="analysis",
                      type="string",
                      help="restrict output to set of analysis [beb|neb].")

    parser.add_option("--significance-threshold",
                      dest="significance_threshold",
                      type="float",
                      help="significance threshold for log-likelihood test.")

    parser.add_option("--filter-mali",
                      dest="filter_mali",
                      type="choice",
                      choices=("none", "gaps"),
                      help="filter by mali to remove gapped positions.")

    parser.add_option(
        "--filename-mali",
        dest="filename_mali",
        type="string",
        help=
        "filename with multiple alignment used for calculating sites - used for filtering"
    )

    parser.add_option(
        "--filename-map-mali",
        dest="filename_map_mali",
        type="string",
        help="filename with multiple alignment to map sites onto.")

    parser.add_option(
        "--jalview-titles",
        dest="jalview_titles",
        type="string",
        help="comma separated list of jalview annotation titles.")

    parser.add_option("--jalview-symbol",
                      dest="jalview_symbol",
                      type="string",
                      help="symbol to use in jalview.")

    parser.set_defaults(
        methods=[],
        prefix=None,
        filter_probability=0,
        filter_omega=0,
        models="",
        analysis="",
        significance_threshold=0.05,
        selection_mode="consistent",
        filename_mali=None,
        filename_map_mali=None,
        jalview_symbol="*",
        jalview_titles="",
        filter_mali=None,
    )

    (options, args) = E.Start(parser)

    if options.jalview_titles:
        options.jalview_titles = options.jalview_titles.split(",")
    else:
        options.jalview_titles = args

    options.models = options.models.split(",")
    options.analysis = options.analysis.split(",")

    for a in options.analysis:
        if a not in ("beb", "neb"):
            raise "unknown analysis section: '%s', possible values are 'beb' and/or 'neb'" % a

    for a in options.models:
        if a not in ("8", "2", "3"):
            raise "unknown model: '%s', possible values are 2, 3, 8" % a

    codeml = WrapperCodeML.CodeMLSites()

    ## filter and extract functions
    filter_f = lambda x: x.mProbability >= options.filter_probability and x.mOmega >= options.filter_omega
    extract_f = lambda x: x.mResidue

    ## read multiple results
    results = []
    ninput, noutput, nskipped = 0, 0, 0

    headers = []
    for f in args:
        ninput += 1
        try:
            results.append(codeml.parseOutput(open(f, "r").readlines()))
        except WrapperCodeML.UsageError:
            if options.loglevel >= 1:
                options.stdlog.write("# no input from %s\n" % f)
            nskipped += 1
            continue
        noutput += 1
        headers.append(f)

    ## map of nested model (key) to more general model
    map_nested_models = {'8': '7', '2': '1', '3': '0'}

    if options.filename_mali:
        mali = Mali.Mali()
        mali.readFromFile(open(options.filename_mali, "r"))
    else:
        mali = None

    ###############################################################
    ###############################################################
    ###############################################################
    ## use multiple alignment to map residues to a reference mali
    ## or a sequence.
    ###############################################################
    if options.filename_map_mali:

        if not mali:
            raise "please supply the input multiple alignment, if residues are to be mapped."

        ## translate the alignments
        def translate(s):
            sequence = s.mString
            seq = []
            for codon in [
                    sequence[x:x + 3] for x in range(0, len(sequence), 3)
            ]:
                aa = Genomics.MapCodon2AA(codon)
                seq.append(aa)

            s.mString = "".join(seq)

        tmali = Mali.Mali()
        tmali.readFromFile(open(options.filename_mali, "r"))
        tmali.apply(translate)

        tmap_mali = Mali.Mali()
        tmap_mali.readFromFile(open(options.filename_map_mali, "r"))

        if tmap_mali.getAlphabet() == "na":
            tmap_mali.apply(translate)

        map_old2new = alignlib_lite.py_makeAlignmentVector()

        mali1 = alignlib_lite.py_makeProfileFromMali(convertMali2Mali(tmali))

        if tmap_mali.getLength() == 1:

            s = tmap_mali.values()[0].mString
            mali2 = alignlib_lite.py_makeSequence(s)
            ## see if you can find an identical subsequence and then align to thisD
            for x in tmali.values():
                if s in re.sub("[- .]+", "", x.mString):
                    mali1 = alignlib_lite.py_makeSequence(x.mString)
                    break
        else:
            mali2 = alignlib_lite.py_makeProfileFromMali(
                convertMali2Mali(tmap_mali))

        alignator = alignlib_lite.py_makeAlignatorDPFull(
            alignlib_lite.py_ALIGNMENT_LOCAL, -10.0, -2.0)
        alignator.align(map_old2new, mali1, mali2)

        consensus = tmap_mali.getConsensus()

        if options.loglevel >= 4:
            options.stdlog.write("# alphabet: %s\n" % tmap_mali.getAlphabet())
            options.stdlog.write("# orig  : %s\n" % tmali.getConsensus())
            options.stdlog.write("# mapped: %s\n" % consensus)
            options.stdlog.write("# alignment: %s\n" % map_old2new.Write())
    else:
        map_old2new = None

    for method in options.methods:

        if method == "summary-numbers":

            options.stdlog.write( \
"""# Numbers of positive sites.
#
# The consistent row/column contains positive sites that are significant
# (above thresholds for probability and omega) for all models/analysis
# that have been selected (label: cons).
#
# The log-likelihood ratio test is performed for model pairs, depending
# on the output chosen.
# Significance threshold: %6.4f
# The pairs are 8 versus 7 and 2 versus 1 and 3 versus 0.
#
""" % options.significance_threshold )

            ## write header
            if options.prefix: options.stdout.write("prefix\t")

            options.stdout.write("method\tnseq\t")
            h = []
            for model in options.models:
                for analysis in options.analysis:
                    h.append("%s%s" % (analysis, model))
                h.append("p%s" % (model))
                h.append("df%s" % (model))
                h.append("chi%s" % (model))
                h.append("lrt%s" % (model))

            options.stdout.write("\t".join(h))
            options.stdout.write("\tcons\tpassed\tfilename\n")

            nmethod = 0

            consistent_cols = [None for x in range(len(options.analysis))]
            passed_tests = {}
            for m in options.models:
                passed_tests[m] = 0

            for result in results:

                row_consistent = None

                if options.prefix:
                    options.stdout.write("%s" % (options.prefix))

                options.stdout.write("%i" % nmethod)
                options.stdout.write("\t%i" % (result.mNumSequences))

                npassed = 0

                for model in options.models:

                    sites = result.mSites[model]

                    ## do significance test
                    full_model, null_model = model, map_nested_models[model]

                    lrt = Stats.doLogLikelihoodTest(
                        result.mSites[full_model].mLogLikelihood,
                        result.mSites[full_model].mNumParameters,
                        result.mSites[null_model].mLogLikelihood,
                        result.mSites[null_model].mNumParameters,
                        options.significance_threshold)

                    x = 0
                    for analysis in options.analysis:

                        if analysis == "neb":
                            s = set(
                                map(
                                    extract_f,
                                    filter(filter_f,
                                           sites.mNEB.mPositiveSites)))

                        elif analysis == "beb":
                            s = set(
                                map(
                                    extract_f,
                                    filter(filter_f,
                                           sites.mBEB.mPositiveSites)))

                        options.stdout.write("\t%i" % (len(s)))

                        if not lrt.mPassed:
                            s = set()

                        if row_consistent == None:
                            row_consistent = s
                        else:
                            row_consistent = row_consistent.intersection(s)

                        if consistent_cols[x] == None:
                            consistent_cols[x] = s
                        else:
                            consistent_cols[x] = consistent_cols[
                                x].intersection(s)

                        x += 1

                    if lrt.mPassed:
                        c = "passed"
                        passed_tests[model] += 1
                        npassed += 1
                    else:
                        c = "failed"

                    options.stdout.write("\t%5.2e\t%i\t%5.2f\t%s" %\
                                         (lrt.mProbability,
                                          lrt.mDegreesFreedom,
                                          lrt.mChiSquaredValue,
                                          c))

                options.stdout.write(
                    "\t%i\t%i\t%s\n" %
                    (len(row_consistent), npassed, headers[nmethod]))

                nmethod += 1

            if options.prefix:
                options.stdout.write("%s\t" % options.prefix)

            options.stdout.write("cons")

            row_consistent = None
            total_passed = 0
            for model in options.models:

                x = 0

                for analysis in options.analysis:

                    s = consistent_cols[x]
                    if s == None:
                        s = set()

                    options.stdout.write("\t%i" % (len(s)))

                    if row_consistent == None:
                        row_consistent = s
                    else:
                        row_consistent = row_consistent.intersection(s)

                    x += 1

                options.stdout.write("\tna\t%i" % passed_tests[model])
                total_passed += passed_tests[model]

            options.stdout.write("\t%i\t%i\n" %
                                 (len(row_consistent), total_passed))

        elif method == "jalview":

            options.stdout.write("JALVIEW_ANNOTATION\n")
            options.stdout.write("# Created: %s\n\n" %
                                 (time.asctime(time.localtime(time.time()))))

            l = 1
            x = 0
            for result in results:

                sites, significance = selectPositiveSites(
                    [result], options.selection_mode, options, mali)

                codes = [""] * result.mLength

                if len(sites) == 0: continue

                for site in sites:
                    codes[site - 1] = options.jalview_symbol

                options.stdout.write(
                    "NO_GRAPH\t%s\t%s\n" %
                    (options.jalview_titles[x], "|".join(codes)))
                x += 1

        elif method == "count-positive-sites":

            sites, significance = selectPositiveSites(results,
                                                      options.selection_mode,
                                                      options, mali)

            options.stdout.write("%i\n" % (len(sites)))

        elif method in ("positive-site-table", ):

            sites, significance = selectPositiveSites(results,
                                                      options.selection_mode,
                                                      options, mali)

            headers = ["site", "P"]
            if map_old2new:
                headers.append("mapped")
                headers.append("Pm")

            options.stdout.write("\t".join(headers) + "\n")

            sites = list(sites)
            sites.sort()
            nmapped, nunmapped = 0, 0
            for site in sites:
                values = [site, "%6.4f" % significance[site]]

                if map_old2new:
                    r = map_old2new.mapRowToCol(site)
                    if r == 0:
                        values.append("na")
                        values.append("")
                        nunmapped += 1
                        if options.loglevel >= 2:
                            options.stdlog.write("# unmapped residue: %i\n" %
                                                 site)
                    else:
                        values.append(r)
                        values.append(consensus[r - 1])
                        nmapped += 1

                options.stdout.write("\t".join(map(str, (values))) + "\n")

            if options.loglevel >= 1:
                options.stdlog.write(
                    "# sites: ninput=%i, noutput=%i, nskipped=%i\n" %
                    (len(sites), nmapped, nunmapped))

    E.info("ninput=%i, noutput=%i, nskipped=%i" % (ninput, noutput, nskipped))

    E.Stop()
コード例 #6
0
ファイル: mali2rates.py プロジェクト: santayana/cgat
def runBaseML(mali, pairs, options):

    baseml = WrapperCodeML.BaseML()

    paml_options = {}

    map_new2old = mali.mapIdentifiers()
    ids = mali.getIdentifiers()

    if options.kappa is not None:
        paml_options["kappa"] = str(options.kappa)

    if options.fix_kappa:
        paml_options["fix_kappa"] = "1"

    if options.alpha is not None:
        paml_options["alpha"] = str(options.alpha)

    if options.fix_alpha:
        paml_options["fix_alpha"] = "1"

    if options.clean_data:
        paml_options["cleandata"] = options.clean_data

    map_distance2index = {}
    for key, val in baseml.mOptions["model"].items():
        map_distance2index[val] = key

    if options.distance.upper() in map_distance2index:
        paml_options["model"] = map_distance2index[options.distance]
    else:
        raise "unknown distance for baseml: %s" % options.distance

    if options.filename_tree:
        result = baseml.Run(mali,
                            tree=options.filename_tree,
                            dump=options.dump,
                            test=options.test,
                            options=paml_options)

    elif options.pairwise:

        noutput = 0
        ninput = 0
        ntotal = (len(ids) * (len(ids) - 1)) / 2

        if options.output_format == "list":
            options.stdout.write("\t".join(
                ("seq1", "seq2", "distance", "lnL", "alpha", "kappa", "msg")))

            if options.with_counts:
                options.stdout.write("\t%s" %
                                     Genomics.SequencePairInfo().getHeader())
            options.stdout.write("\n")

        for x, y in pairs:
            m1 = mali.getSequence(ids[x])
            ninput += 1
            temp_mali = Mali.Mali()
            m2 = mali.getSequence(ids[y])

            temp_mali.addSequence(ids[x], m1.mFrom, m1.mTo, m1.mString)
            temp_mali.addSequence(ids[y], m2.mFrom, m2.mTo, m2.mString)

            result = baseml.Run(temp_mali,
                                tree="(%s,%s);" % (ids[x], ids[y]),
                                dump=options.dump,
                                test=options.test,
                                options=paml_options)

            if options.loglevel >= 1 and ninput % options.report_step == 0:
                options.stdlog.write(
                    "# pairwise computation: %i/%i -> %i%% in %i seconds.\n" %
                    (ninput, ntotal, 100.0 * ninput / ntotal,
                     time.time() - tstart))
                options.stdlog.flush()

            noutput += printPair(result, temp_mali, map_new2old, options)

            options.stdout.flush()

    else:
        # assume that there are only two sequences
        if mali.getLength() == 2:
            id1, id2 = mali.getIdentifiers()
            result = baseml.Run(mali,
                                tree="(%s,%s);" % (id1, id2),
                                dump=options.dump,
                                test=options.test,
                                options=paml_options)

        else:
            raise "please supply tree if there are more than two sequences and pairwise mode is not selected."

        if options.output_format == "list":
            all_identifiers = mali.getIdentifiers()
            options.stdout.write("\t".join(("seq1", "seq2", "distance", "lnL",
                                            "alpha", "kappa")) + "\n")
            for x in range(len(all_identifiers) - 1):
                id_x = all_identifiers[x]
                for y in range(x + 1, len(all_identifiers)):
                    id_y = all_identifiers[y]

                    options.stdout.write("\t".join(
                        (id_x, id_y, options.format %
                         result.mDistanceMatrix[id_x][id_y], options.format %
                         result.mLogLikelihood, options.format % result.mAlpha,
                         options.format % result.mKappa)) + "\n")

        elif options.output_format == "tree":
            options.stdout.write("%s\n" % result.mTree)