# WM MS lesion inference # -------------------------------------------------- seg_time = time.time() "> CNN:", scan, "running WM lesion segmentation" sys.stdout.flush() options['test_scan'] = scan test_x_data = { scan: { m: os.path.join(options['tmp_folder'], n) for m, n in zip(options['modalities'], options['x_names']) } } out_seg = test_cascaded_model(model, test_x_data, options) print "> INFO:", scan, "CNN Segmentation time: ",\ round(time.time() - seg_time), "sec" # If input images have been registered before segmentation -> T1w space, # then resample the segmentation back to the original space if options['register_modalities']: print "> INFO:", scan, "Inverting lesion segmentation masks" invert_registration(current_folder, options) print "> INFO:", scan, "total pipeline time: ",\ round(time.time() - total_time), "sec" # remove tmps if not set if options['save_tmp'] is False:
def infer_segmentation(options): """ Infer segmentation given the input options passed as parameters """ # set GPU mode from the configuration file. So, this has to be updated before calling # the CNN libraries if the default config "~/.theanorc" has to be replaced. if options['mode'].find('cuda') == -1 and options['mode'].find( 'gpu') == -1: os.environ[ 'THEANO_FLAGS'] = 'mode=FAST_RUN,device=cpu,floatX=float32,optimizer=fast_compile' else: os.environ['THEANO_FLAGS'] = 'mode=FAST_RUN,device=' + options[ 'mode'] + ',floatX=float32,optimizer=fast_compile' from CNN.base import test_cascaded_model from CNN.build_model import cascade_model # -------------------------------------------------- # net configuration # take into account if the pretrained models have to be used # all images share the same network model # -------------------------------------------------- options['full_train'] = True options['load_weights'] = True options['weight_paths'] = os.path.join(CURRENT_PATH, 'nets') options['net_verbose'] = 0 model = cascade_model(options) # -------------------------------------------------- # process each of the scans # - image identification # - image registration # - skull-stripping # - WM segmentation # -------------------------------------------------- options['task'] = 'testing' scan_list = os.listdir(options['test_folder']) scan_list.sort() for scan in scan_list: total_time = time.time() options['tmp_scan'] = scan # -------------------------------------------------- # move things to a tmp folder before starting # -------------------------------------------------- current_folder = os.path.join(options['test_folder'], scan) options['tmp_folder'] = os.path.normpath( os.path.join(current_folder, 'tmp')) # -------------------------------------------------- # preprocess scans # -------------------------------------------------- preprocess_scan(current_folder, options) # -------------------------------------------------- # WM MS lesion inference # -------------------------------------------------- seg_time = time.time() "> CNN:", scan, "running WM lesion segmentation" sys.stdout.flush() options['test_scan'] = scan test_x_data = { scan: { m: os.path.join(options['tmp_folder'], n) for m, n in zip(options['modalities'], options['x_names']) } } test_cascaded_model(model, test_x_data, options) print "> INFO:", scan, "CNN Segmentation time: ", round( time.time() - seg_time), "sec" print "> INFO:", scan, "total pipeline time: ", round( time.time() - total_time), "sec" # remove tmps if not set if options['save_tmp'] is False: try: os.rmdir(options['tmp_folder']) os.rmdir( os.path.join(options['current_folder'], options['experiment'])) except: pass print "> INFO: All processes have been finished. Have a good day!"
def infer_segmentation(options): """ Infer segmentation given the input options passed as parameters """ # define the training backend define_backend(options) from CNN.base import test_cascaded_model from CNN.build_model import cascade_model # -------------------------------------------------- # net configuration # take into account if the pretrained models have to be used # all images share the same network model # -------------------------------------------------- options['full_train'] = True options['load_weights'] = True options['weight_paths'] = os.path.join(CURRENT_PATH, 'nets') options['net_verbose'] = 0 model = cascade_model(options) # -------------------------------------------------- # process each of the scans # - image identification # - image registration # - skull-stripping # - WM segmentation # -------------------------------------------------- options['task'] = 'testing' scan_list = os.listdir(options['test_folder']) scan_list.sort() for scan in scan_list: total_time = time.time() options['tmp_scan'] = scan # -------------------------------------------------- # move things to a tmp folder before starting # -------------------------------------------------- current_folder = os.path.join(options['test_folder'], scan) options['tmp_folder'] = os.path.normpath( os.path.join(current_folder, 'tmp')) # -------------------------------------------------- # preprocess scans # -------------------------------------------------- preprocess_scan(current_folder, options) # -------------------------------------------------- # WM MS lesion inference # -------------------------------------------------- seg_time = time.time() "> CNN:", scan, "running WM lesion segmentation" sys.stdout.flush() options['test_scan'] = scan test_x_data = { scan: { m: os.path.join(options['tmp_folder'], n) for m, n in zip(options['modalities'], options['x_names']) } } test_cascaded_model(model, test_x_data, options) print "> INFO:", scan, "CNN Segmentation time: ", round( time.time() - seg_time), "sec" print "> INFO:", scan, "total pipeline time: ", round( time.time() - total_time), "sec" # remove tmps if not set if options['save_tmp'] is False: try: os.rmdir(options['tmp_folder']) os.rmdir( os.path.join(options['current_folder'], options['experiment'])) except: pass print "> INFO: All processes have been finished. Have a good day!"
def infer_segmentation(options): """ Infer segmentation given the input options passed as parameters """ # define the training backend define_backend(options) from CNN.base import test_cascaded_model from CNN.build_model import cascade_model # -------------------------------------------------- # net configuration # take into account if the pretrained models have to be used # all images share the same network model # -------------------------------------------------- options['full_train'] = True options['load_weights'] = True options['weight_paths'] = os.path.join(CURRENT_PATH, 'nets') options['net_verbose'] = 0 model = cascade_model(options) # -------------------------------------------------- # process each of the scans # - image identification # - image registration # - skull-stripping # - WM segmentation # -------------------------------------------------- # scan_list = os.listdir(options['test_folder']) # scan_list.sort() # # check and remove the folder which dose not contain the necessary modalities before prepossessing step # for check in scan_list: # check_oututs(check, options) # update scan list after removing the unnecessary folders before prepossessing step options['task'] = 'testing' scan_list = os.listdir(options['test_folder']) scan_list.sort() for scan in scan_list: total_time = time.time() options['tmp_scan'] = scan # -------------------------------------------------- # move things to a tmp folder before starting # -------------------------------------------------- current_folder = os.path.join(options['test_folder'], scan) options['tmp_folder'] = os.path.normpath( os.path.join(current_folder, 'tmp')) # -------------------------------------------------- # preprocess scans # -------------------------------------------------- # preprocess_scan(current_folder, options) # -------------------------------------------------- # WM MS lesion inference # -------------------------------------------------- seg_time = time.time() print("> CNN:", scan, "running WM lesion segmentation") sys.stdout.flush() options['test_scan'] = scan test_x_data = { scan: { m: os.path.join(options['tmp_folder'], n) for m, n in zip(options['modalities'], options['x_names']) } } test_cascaded_model(model, test_x_data, options) if options['register_modalities']: # print("> INFO:", scan, "Inverting lesion segmentation masks") print(CYELLOW + "Inverting lesion segmentation masks:", CRED + scan + CEND, ".....started!" + CEND) invert_registration(current_folder, options) print("> INFO:", scan, "CNN Segmentation time: ", round(time.time() - seg_time), "sec") print("> INFO:", scan, "total pipeline time: ", round(time.time() - total_time), "sec") # remove tmps if not set if options['save_tmp'] is False: try: os.rmdir(options['tmp_folder']) os.rmdir( os.path.join(options['current_folder'], options['experiment'])) except: pass print("> INFO: All processes have been finished.")