コード例 #1
0
def run_without_offloading(cell_list):
    def run(cell_num):
        config = Env_Config()
        model_path = os.path.join(root_dir,
                                  'offloading/output_model/deepQ_test.ckpt')
        offloading = Run_Offloading(model_path, config, cell_num)
        result_dict = offloading.run_test_without_RL(0)
        result_array = dict_to_nparray(result_dict, cell_num)

        return result_array

    target_path = os.path.join(
        root_dir, 'offloading/result/without_offloading_without_RL')
    utility.check_path_exist(target_path)
    store_path = os.path.join(target_path, 'loop_report.txt')
    if os.path.exists(store_path):
        os.remove(store_path)
    cell_list_len = len(cell_list)
    all_cell_result_array_list = []

    for cell_num in cell_list:
        logger.info('cell_num:{}'.format(cell_num))
        result_array = run(cell_num)
        all_cell_result_array_list.append(result_array)
        save_report(result_array, store_path)
        all_cell_result_array = np.stack(all_cell_result_array_list, axis=0)
        du.save_array(all_cell_result_array,
                      os.path.join(target_path, 'all_cell_result_array.npy'))
    all_cell_result_array = np.stack(all_cell_result_array_list, axis=0)
    du.save_array(all_cell_result_array,
                  os.path.join(target_path, 'all_cell_result_array.npy'))
    plt.ioff()
コード例 #2
0
def run_ARIMA_prediction_RL(cell_list):
    def run_offloading(cell_num):
        config = Env_Config()
        config.features_num = 3
        config.base_dir = os.path.join(root_dir,
                                       'offloading/npy/real_prediction_ARIMA')
        model_path = os.path.join(
            root_dir, 'offloading/output_model/deepQ_RL_ARIMA_prediction.ckpt')
        offloading = Run_Offloading(model_path, config, cell_num)
        without_RL_with_offloading_result_dict = offloading.run_test_without_RL(
            10)
        without_RL_offloading_result_dict = offloading.run_test_without_RL(0)

        logger.info(
            'macro load:{} offloading_without_RL:{} without_RL_without_offloading:{}'
            .format(
                np.mean(
                    without_RL_offloading_result_dict['macro_load'][-149:]),
                np.mean(without_RL_with_offloading_result_dict['energy_effi']
                        [-149:]),
                np.mean(
                    without_RL_offloading_result_dict['energy_effi'][-149:])))
        offloading.RL_train()
        with_RL_result_dict = offloading.run_test_with_RL(reload=False)
        with_RL_result_array = dict_to_nparray(with_RL_result_dict, cell_num)
        # without_RL_with_offloading_result_array = dict_to_nparray(without_RL_with_offloading_result_dict)
        # without_RL_offloading_result_array = dict_to_nparray(without_RL_offloading_result_dict)
        offloading_plot(with_RL_result_dict,
                        without_RL_with_offloading_result_dict,
                        without_RL_offloading_result_dict)
        return with_RL_result_array

    plt.ion()
    target_path = os.path.join(root_dir,
                               'offloading/result/RL_real_ARIMA_prediction')
    utility.check_path_exist(target_path)
    store_path = os.path.join(target_path, 'loop_report.txt')
    if os.path.exists(store_path):
        os.remove(store_path)

    cell_list_len = len(cell_list)
    all_cell_result_array_list = []
    for cell_num in cell_list:

        with_RL_result_array = run_offloading(cell_num)
        all_cell_result_array_list.append(with_RL_result_array)
        logger.info('cell_num:{} average effi mean:{}'.format(
            cell_num, np.mean(with_RL_result_array[-149:, 2])))
        save_report(with_RL_result_array, store_path)
        all_cell_result_array = np.stack(all_cell_result_array_list, axis=0)
        du.save_array(all_cell_result_array,
                      os.path.join(target_path, 'all_cell_result_array.npy'))

    all_cell_result_array = np.stack(all_cell_result_array_list, axis=0)
    du.save_array(all_cell_result_array,
                  os.path.join(target_path, 'all_cell_result_array.npy'))
    plt.ioff()