コード例 #1
0
def train():
    g = tf.Graph()
    with g.as_default():
        # load data get iterator
        data_loader = data_utils_mean.DataLoader(SEQUENCE_LENGTH, BATCH_SIZE, NUM_EPOCHS)
        iterator = data_loader.load_data(TRAIN_TFR_PATH, True)
        with tf.Session(graph=g) as sess:
            frameNo, image, label = iterator.get_next()

            # Construct and return the model
            image_batch = reshape_to_cnn(image)
            network_fn = nets_factory.get_network_fn(
                name='densenet121',
                num_classes=None,
                weight_decay=0.00004,
                data_format='NHWC',
                is_training=True
            )
            face_output, _ = network_fn(image_batch)
            # print face_output.get_shape().as_list()

            # RNN part
            rnn_in = reshape_to_rnn(face_output)
            prediction = models.get_prediction_atten(rnn_in)
            prediction = tf.reshape(prediction, [BATCH_SIZE, SEQUENCE_LENGTH, 2])

            label_batch = tf.reshape(label, [BATCH_SIZE, SEQUENCE_LENGTH, 2])

            # compute losses using slim
            # compute_loss(prediction, label_batch)

            # total_loss = slim.losses.get_total_loss()
            # optimizer = tf.train.AdamOptimizer(LEARNING_RATE)

            # restore VGG-FACE model at the beginning
            # when the network only contains DenseNet all variables can be restored,
            # so here we restore global variables with ignore_missing_vars = True
            variables_to_restore = tf.global_variables()
            init_fn = slim.assign_from_checkpoint_fn(DenseNet_RESTORE_PATH, variables_to_restore,
                                                     ignore_missing_vars=True)
            # summarize_gradients : Whether or not add summaries for each gradient.
            # variables_to_train: an optional list of variables to train. If None, it will default to all tf.trainable_variables().
            trainable_names = ['attention-layer', 'fcatten']
            variables_to_train = tf.contrib.framework.get_variables_to_restore(include=trainable_names)
            print_var(variables_to_train)
            print 'global vars'
            print_var(tf.global_variables())
コード例 #2
0
def evaluate():
    g = tf.Graph()
    with g.as_default():
        # load data get iterator
        data_loader = data_utils_mean.DataLoader(SEQUENCE_LENGTH, BATCH_SIZE,
                                                 NUM_EPOCHS)
        iterator = data_loader.load_data(TEST_TFR_PATH, False)
        frameNo, image, label = iterator.get_next()
        # define model graph

        image_batch = tf.reshape(image, [-1, 96, 96, 3])
        # Construct and return the model
        network_fn = nets_factory.get_network_fn(name='densenet161',
                                                 num_classes=None,
                                                 weight_decay=0.00004,
                                                 data_format='NHWC',
                                                 is_training=False)
        face_output, _ = network_fn(image_batch)
        # RNN part
        rnn_in = reshape_to_rnn(face_output)
        prediction = models.get_prediction_atten(rnn_in)
        prediction = tf.reshape(prediction, [BATCH_SIZE, SEQUENCE_LENGTH, 2])
        label_batch = tf.reshape(label, [BATCH_SIZE, SEQUENCE_LENGTH, 2])

        # Computing MSE and Concordance values, and adding them to summary
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
            'eval/mse_valence':
            slim.metrics.streaming_mean_squared_error(prediction[:, :, 0],
                                                      label_batch[:, :, 0]),
            'eval/mse_arousal':
            slim.metrics.streaming_mean_squared_error(prediction[:, :, 1],
                                                      label_batch[:, :, 1]),
        })

        summary_ops = []
        conc_total = 0
        mse_total = 0
        for i, name in enumerate(['valence', 'arousal']):
            with tf.name_scope(name) as scope:
                concordance_cc2, values, updates = metrics.concordance_cc2(
                    tf.reshape(prediction[:, :, i], [-1]),
                    tf.reshape(label_batch[:, :, i], [-1]))
                for n, v in updates.items():
                    names_to_updates[n + '/' + name] = v
            op = tf.summary.scalar('eval/concordance_' + name, concordance_cc2)
            op = tf.Print(op, [concordance_cc2], 'eval/concordance_' + name)
            summary_ops.append(op)

            mse_eval = 'eval/mse_' + name
            op = tf.summary.scalar(mse_eval, names_to_values[mse_eval])
            op = tf.Print(op, [names_to_values[mse_eval]], mse_eval)
            summary_ops.append(op)

            mse_total += names_to_values[mse_eval]
            conc_total += concordance_cc2
        conc_total = conc_total / 2
        mse_total = mse_total / 2

        op = tf.summary.scalar('eval/concordance_total', conc_total)
        op = tf.Print(op, [conc_total], 'eval/concordance_total')
        summary_ops.append(op)

        op = tf.summary.scalar('eval/mse_total', mse_total)
        op = tf.Print(op, [mse_total], 'eval/mse_total')
        summary_ops.append(op)

        num_batches = int(NUM_BATCHES)
        loggingTF.set_verbosity(1)
        if not os.path.exists(SUMMARY_PATH):
            os.makedirs(SUMMARY_PATH)
        slim.evaluation.evaluate_once(
            '',
            MODEL_PATH,
            SUMMARY_PATH,
            num_evals=num_batches,
            eval_op=list(names_to_updates.values()),
            summary_op=tf.summary.merge(summary_ops),
        )
コード例 #3
0
def train():
    g = tf.Graph()
    with g.as_default():
        # load data get iterator
        data_loader = data_utils_mean.DataLoader(SEQUENCE_LENGTH, BATCH_SIZE,
                                                 NUM_EPOCHS)
        iterator = data_loader.load_data(TRAIN_TFR_PATH, True)
        with tf.Session(graph=g) as sess:
            frameNo, image, label = iterator.get_next()

            # Construct and return the model
            image_batch = reshape_to_cnn(image)
            network_fn = nets_factory.get_network_fn(name='densenet121',
                                                     num_classes=None,
                                                     weight_decay=0.00004,
                                                     data_format='NHWC',
                                                     is_training=True)
            face_output, _ = network_fn(image_batch)
            # print face_output.get_shape().as_list()

            # RNN part
            rnn_in = reshape_to_rnn(face_output)
            prediction = models.get_prediction_atten(rnn_in, attn_length=30)
            prediction = tf.reshape(prediction,
                                    [BATCH_SIZE, SEQUENCE_LENGTH, 2])
            label_batch = tf.reshape(label, [BATCH_SIZE, SEQUENCE_LENGTH, 2])

            # compute losses using slim
            compute_loss(prediction, label_batch)

            total_loss = slim.losses.get_total_loss()
            optimizer = tf.train.AdamOptimizer(LEARNING_RATE)

            # restore VGG-FACE model at the beginning
            # when the network only contains DenseNet all variables can be restored,
            # so here we restore global variables with ignore_missing_vars = True
            variables_to_restore = tf.global_variables()
            init_fn = slim.assign_from_checkpoint_fn(DenseNet_RESTORE_PATH,
                                                     variables_to_restore,
                                                     ignore_missing_vars=True)
            # print_var(tf.global_variables())
            # print_var(tf.trainable_variables())
            # summarize_gradients : Whether or not add summaries for each gradient.
            # variables_to_train: an optional list of variables to train. If None, it will default to all tf.trainable_variables().
            train_op = slim.learning.create_train_op(
                total_loss,
                optimizer,
                summarize_gradients=True
                # Whether or not add summaries for each gradient.
            )
            loggingTF.set_verbosity(1)
            # keep 10000 ckpts
            saver = tf.train.Saver(max_to_keep=10000)
            # including initialize local and global variables

            slim.learning.train(
                train_op,
                TRAIN_DIR,
                init_fn=init_fn,
                save_summaries_secs=60 *
                15,  # How often, in seconds, to save summaries.
                log_every_n_steps=500,
                # The frequency, in terms of global steps, that the loss and global step are logged.
                save_interval_secs=60 *
                15,  # How often, in seconds, to save the model to `logdir`.
                saver=saver)