def testHW2(): # Success test, train = utils.load_and_normalize_housing_set() df_train = pd.DataFrame(train) df_test = pd.DataFrame(test) print df_train.head(10) #raw_input() print hw2.linear_gd(df_train, df_test, 'MEDV')
def testHW2_subset(): # Success test, train = utils.load_and_normalize_housing_set() df_full = pd.DataFrame(train) df_test = utils.train_subset(df_full, ['CRIM', 'TAX', 'B', 'MEDV'], n=10) df_train = utils.train_subset(df_full, ['CRIM', 'TAX', 'B', 'MEDV'], n=10) dfX_test = pd.DataFrame([df_test['CRIM'], df_test['TAX'], df_test['MEDV']]).transpose() dfX_train = pd.DataFrame([df_train['CRIM'], df_train['TAX'], df_train['MEDV']]).transpose() print hw2.linear_gd(dfX_train, dfX_test, 'MEDV')
def testHW2_allcols(): # Fail test, train = utils.load_and_normalize_housing_set() df_full = pd.DataFrame(train) cols = [col for col in df_full.columns if col != 'MEDV'] df_test = utils.train_subset(df_full, cols, n=10) df_train = utils.train_subset(df_full, cols, n=10) #dfX_test = pd.DataFrame([df_test['CRIM'], df_test['TAX'], df_test['MEDV']]).transpose() #dfX_train = pd.DataFrame([df_train['CRIM'], df_train['TAX'], df_train['MEDV']]).transpose() print hw2.linear_gd(df_train, df_test, 'MEDV')