コード例 #1
0
ファイル: face.py プロジェクト: alex3453/python-course
def detect(image):
    image_size = cv.GetSize(image)

    # create grayscale version
    grayscale = cv.CreateImage(image_size, 8, 1)
    cv.CvtColor(image, grayscale, cv.BGR2GRAY)

    # create storage
    storage = cv.CreateMemStorage(0)
    cv.ClearMemStorage(storage)

    # equalize histogram
    cv.EqualizeHist(grayscale, grayscale)

    # detect objects
    cascade = cv.LoadHaarClassifierCascade('haarcascade_frontalface_alt.xml',
                                           cv.Size(1, 1))
    faces = cv.HaarDetectObjects(grayscale, cascade, storage, 1.2, 2,
                                 cv.HAAR_DO_CANNY_PRUNING, cv.Size(50, 50))

    if faces:
        print 'face detected!'
        for i in faces:
            cv.Rectangle(image, cv.Point(int(i.x), int(i.y)),
                         cv.Point(int(i.x + i.width), int(i.y + i.height)),
                         cv.RGB(0, 255, 0), 3, 8, 0)
コード例 #2
0
 def updateEyes(self):
     self.eyeTopline = self.ypt + ((self.height*1)/3);
     self.eyeBotline = self.ypt + ((self.height*1)/2);
     
     self.eyeLeft1 = cv.Point(self.xpt + (self.width/5),self.eyeTopline);
     self.eyeLeft2 = cv.Point(self.xpt + ((self.width*3)/8), self.eyeBotline);
     self.eyeRight1 = cv.Point(self.xpt + ((self.width*5)/8),self.eyeTopline);
     self.eyeRight2 = cv.Point(self.xpt + ((self.width*4)/5),self.eyeBotline);
コード例 #3
0
ファイル: webcamdetection.py プロジェクト: alpfundi/Facade
    def detect(self, image):
        size = cv.GetSize(image)

        # create grayscale version
        grayscale = cv.CreateImage(size, 8, 1)
        cv.CvtColor(image, grayscale, cv.BGR2GRAY)

        # create and clear storage
        storage = cv.CreateMemStorage(0)
        cv.ClearMemStorage(storage)

        # equalize histogram
        cv.EqualizeHist(grayscale, grayscale)

        # detect faces
        faces = cv.HaarDetectObjects(grayscale, self.face_cascade, storage,
                                     1.2, 2, cv.HAAR_DO_CANNY_PRUNING,
                                     self.face_size)

        if faces:
            # faces detected
            for i in faces:
                cv.Rectangle(image, cv.Point(int(i.x), int(i.y)),
                             cv.Point(int(i.x + i.width), int(i.y + i.height)),
                             cv.RGB(0, 255, 0), 3, 8, 0)

            detected = True
            is_face = True
        else:
            # detect body
            bodies = cv.HaarDetectObjects(grayscale, self.body_cascade,
                                          storage, 1.1, 3, 0, self.body_size)

            if bodies:
                # body detected
                for i in bodies:
                    cv.Rectangle(
                        image, cv.Point(int(i.x), int(i.y)),
                        cv.Point(int(i.x + i.width), int(i.y + i.height)),
                        cv.RGB(0, 255, 0), 3, 8, 0)

                detected = True
                is_face = False
            else:
                detected = False
                is_face = False

        # release resources we don't need any more
        cv.ReleaseImage(grayscale)
        cv.ReleaseMemStorage(storage)

        return (detected, is_face)
コード例 #4
0
    def getContours(self, image):
        cv.Smooth(image, image, CVtypes.CV_GAUSSIAN, 17, 17)
        #cv.CvtColor(image,self.modifiedImage,CVtypes.CV_GRAY2RGB);
        cv.Threshold(image, image, 128, 255, CVtypes.CV_THRESH_BINARY)
        #cv.CvtColor(image,self.modifiedImage,CVtypes.CV_GRAY2RGB);
        cv.Canny(image, image, 50, 200)

        #cv.CvtColor(image,self.modifiedImage,CVtypes.CV_GRAY2RGB);
        #cv.CvtColor(self.grayImage,self.modifiedImage,CVtypes.CV_GRAY2RGB);
        #cv.Copy(frame,self.modifiedImage)
        #return
        contour = POINTER(cv.Seq)()
        if 1:
            cv.FindContours(
                image,
                #self.grayImage,
                self.cvStorage[0],
                byref(contour),
                sizeof(cv.Contour),
                CVtypes.CV_RETR_CCOMP,
                CVtypes.CV_CHAIN_APPROX_SIMPLE,
                cv.Point(0, 0),
            )
        contourBlocks = []
        if contour:
            cSeq = cast(contour, POINTER(cv.Seq))
            ellipses = []
            while cSeq:
                contours = []
                total = cSeq[0].total
                if total >= 6:
                    box = cv.FitEllipse2(cSeq)
                    ellipses.append(box)
                #print
                #print
                for i in range(total):
                    next = CVtypes.CV_GET_SEQ_ELEM(cv.Seq, cSeq, i)
                    nContour = cast(next, POINTER(cv.Contour))
                    rect = nContour[0].rect
                    contours.append(rect)
                    #print rect
                contourBlocks.append(contours)
                cSeq = cast(cSeq[0].h_next, POINTER(cv.Seq))
        #print ellipses[0]
        #print
        if 1:
            if contourBlocks:
                bboxes = []
                for contours in contourBlocks:
                    c0 = contours[0]
                    bbox = [self.size[0] + 1, self.size[1] + 1, -1, -1]
                    for i, c in enumerate(contours):
                        #if i==(len(contours)-1): break
                        x0, y0, x1, y1 = c.x, c.y, c.width, c.height
                        if ((x0 > self.size[0]) or (x1 > self.size[0])
                                or (y0 > self.size[1]) or (y1 > self.size[1])
                                or (x0 <= 0) or (x1 <= 0) or (y0 <= 0)
                                or (y1 <= 0)):
                            x0, y0, x1, y1 = c0.x, c0.y, c0.width, c0.height
                            continue
                        if x0 < bbox[0]: bbox[0] = x0
                        if x1 < bbox[0]: bbox[0] = x0
                        if x0 > bbox[2]: bbox[2] = x0
                        if x1 > bbox[2]: bbox[2] = x0
                        if y0 < bbox[1]: bbox[1] = y0
                        if y1 < bbox[1]: bbox[1] = y0
                        if y0 > bbox[3]: bbox[3] = y0
                        if y1 > bbox[3]: bbox[3] = y0
                        cv.Line(
                            self.modifiedImage,
                            cv.Point(x0, y0),
                            cv.Point(x1, y1),
                            #cv.Point(contours[i+1].x,contours[i+1].y),
                            CVtypes.CV_RGB(255, 0, 0),
                            1,
                            1,
                        )
                    bboxes.append(bbox)
                for bbox in bboxes:
                    cv.Rectangle(
                        self.modifiedImage,
                        cv.Point(bbox[0], bbox[1]),
                        cv.Point(bbox[2], bbox[3]),
                        CVtypes.CV_RGB(0, 255, 255),
                        1,
                        8,
                    )
                cx, cy = 0, 0
                num = 0
                for e in ellipses:
                    x = e.center.x
                    y = e.center.y
                    center = cv.Point(int(x), int(y))
                    size = cv.Size(int(e.size.width), int(e.size.height))
                    if size.width > self.size[0] or size.height > self.size[1]:
                        continue
                    cx += x
                    cy += y
                    num += 1
                    angle = -e.angle
                    cv.Ellipse(
                        self.modifiedImage,
                        center,
                        size,
                        angle,
                        0,
                        360,
                        CVtypes.CV_RGB(0, 255, 255),
                    )
                if num:
                    cx /= num
                    cy /= num
                    cv.Circle(
                        self.modifiedImage,
                        cv.Point(int(cx), int(cy)),
                        20,
                        CVtypes.CV_RGB(255, 255, 0),
                    )

        cv.DrawContours(
            self.modifiedImage,
            contour,
            CVtypes.CV_RGB(255, 0, 0),
            CVtypes.CV_RGB(0, 255, 0),
            1,
            1,
        )
コード例 #5
0
def detect_and_draw(img ,cascade):
    global age
    global trackedFaces
    global plotpoints

    t = cv.GetTickCount() ## start counter    
    cv.CvtColor( img, gray, cv.BGR2GRAY )
    cv.Resize( gray, small_img, cv.INTER_LINEAR )
    cv.ClearMemStorage( storage )

    #Ages all trackedFaces
    for f in trackedFaces:
        f.updateLife()
    #Remove expired faces
    for f in trackedFaces:
        if (f.isTooOld()):
            trackedFaces.remove(f)
    
    faces = cv.HaarDetectObjects( small_img, cascade, storage, haar_scale, min_neighbors, haar_flags, min_size )
    drawline = 0
    if faces:
        #found a face
        for r in faces:
            matchedFace = False;
            pt1 = cv.Point( int(r.x*image_scale), int(r.y*image_scale))
            pt2 = cv.Point( int((r.x+r.width)*image_scale), int((r.y+r.height)*image_scale) )
            
            #check if there are trackedFaces
            if (len(trackedFaces) > 0):
                #each face being tracked
                for f in trackedFaces:
                    #the face is found (small movement)
                    if ((abs(f.xpt - pt1.x) < FACE_MAX_MOVEMENT) and (abs(f.ypt - pt1.y) < FACE_MAX_MOVEMENT)):
                        matchedFace = True;
                        f.updateFace(int(r.width*image_scale), int(r.height*image_scale), pt1.x, pt1.y);
                        #f.updateFace(r.width*image_scale, r.height*image_scale, pt1.x, pt1.y);
                        mf = f;
                        break;
                        
                #if face not found, add a new face
                if (matchedFace == False):
                    f = Face(0,int(r.width*image_scale), int(r.height*image_scale), pt1.x, pt1.y,0);
                    trackedFaces.append(f);
                    mf = f;
            #No tracked faces: adding one                            
            else:
                f = Face(0,int (r.width*image_scale), int (r.height*image_scale), pt1.x, pt1.y,0);
                trackedFaces.append(f);
                mf = f;
            #where to draw face and properties
            if (mf.age > 5):
                #draw attention line
                lnpt1 = cv.Point (int (mf.xpt*scale), int(mf.ypt*scale-5)-5)
                if (mf.age > mf.width):
                    lnpt2 = cv.Point (int (mf.xpt*scale+mf.width), int(mf.ypt*scale-5))
                else:
                    lnpt2 = cv.Point (int (mf.xpt*scale+mf.age), int(mf.ypt*scale-5))
                #cv.Line(img, lnpt1, lnpt2, RED, 2, 8, 0) ## drawing attention line
                cv.Rectangle(img, lnpt1, lnpt2, RED, 4, 8, 0) ## drawing bolded attention line
                
                ### draw eyes
                cv.Rectangle(img, mf.eyeLeft1, mf.eyeLeft2, MAGENTA, 3,8,0)
                cv.Rectangle(img, mf.eyeRight1, mf.eyeRight2, MAGENTA, 3,8,0)
                #
                ### draw mouth
                cv.Rectangle(img, mf.mouthTopLeft, mf.mouthBotRight, ORANGE, 3, 8, 0)
                #
                ### draw face
                cv.Rectangle( img, pt1, pt2, getColor(mf), 3, 8, 0 )
                drawline = mf.age
                
    if(CAPTURING): saveAsJPG(img) 
    if (osName == "nt"): cv.Flip(img, img, 0)
    cv.ShowImage ('Camera', img)
    t = cv.GetTickCount() - t ## counter for FPS
    print "%i fps." % (cv.GetTickFrequency()*1000000./t) ## print FPS
コード例 #6
0
    def updateMouth(self):
        self.mouthTopline = self.ypt + ((self.height*2)/3);
        self.mouthBotline = self.ypt + self.height;

        self.mouthTopLeft = cv.Point(self.xpt + self.width/5, self.mouthTopline);
        self.mouthBotRight = cv.Point(self.xpt + (self.width*4)/5, self.mouthBotline);
コード例 #7
0
def detect(image):
    image_size = cv.GetSize(image)

    # create grayscale version
    grayscale = cv.CreateImage(image_size, 8, 1)
    cv.CvtColor(image, grayscale, cv.BGR2GRAY)

    # create storage
    storage = cv.CreateMemStorage(0)
    cv.ClearMemStorage(storage)

    # equalize histogram
    cv.EqualizeHist(grayscale, grayscale)

    # detect objects
    cascade = cv.LoadHaarClassifierCascade('haarcascade_frontalface_alt.xml',
                                           cv.Size(1, 1))
    faces = cv.HaarDetectObjects(grayscale, cascade, storage, 1.2, 2,
                                 cv.HAAR_DO_CANNY_PRUNING, cv.Size(50, 50))

    if faces:
        print 'face detected!'
        for i in faces:
            cv.Rectangle(image, cv.Point(int(i.x), int(i.y)),
                         cv.Point(int(i.x + i.width), int(i.y + i.height)),
                         cv.RGB(0, 255, 0), 3, 8, 0)

    # create windows
    cv.NamedWindow('Camera', cv.WINDOW_AUTOSIZE)

    # create capture device
    device = 0  # assume we want first device
    capture = cv.CreateCameraCapture(0)
    cv.SetCaptureProperty(capture, cv.CAP_PROP_FRAME_WIDTH, 640)
    cv.SetCaptureProperty(capture, cv.CAP_PROP_FRAME_HEIGHT, 480)

    # check if capture device is OK
    if not capture:
        print "Error opening capture device"
        sys.exit(1)

    while 1:
        # do forever

        # capture the current frame
        frame = cv.QueryFrame(capture)
        if frame is None:
            break

        # mirror
        cv.Flip(frame, None, 1)

        # face detection
        detect(frame)
        # display webcam image
        cv.ShowImage('Camera', frame)

        # handle events
        k = cv.WaitKey(10)

        if k == 0x1b:  # ESC
            print 'ESC pressed. Exiting ...'
            break
コード例 #8
0
ファイル: cam-histo.py プロジェクト: KhryptorGraphics/robomow
        cv.SetZero(histimg)

        # compute the width for each bin do display
        bin_w = histimg[0].width / hdims

        for i in range(hdims):
            # for all the bins

            # get the value, and scale to the size of the hist image
            val = int(
                round(cv.GetReal1D(hist[0].bins, i) * histimg[0].height / 255))

            # compute the color
            color = hsv2rgb(i * 180. / hdims)

            # draw the rectangle in the wanted color
            cv.Rectangle(histimg, cv.Point(i * bin_w, histimg[0].height),
                         cv.Point((i + 1) * bin_w, histimg[0].height - val),
                         color, -1, 8, 0)

        # we can now display the images
        cv.ShowImage('Camera', frame)
        cv.ShowImage('Histogram', histimg)

        # handle events
        k = cv.WaitKey(10)

        if k == 0x1b:
            # user has press the ESC key, so exit
            break