コード例 #1
0
ファイル: CXPhasing2.py プロジェクト: necroen/cxphasing
    def M(psi, det_mod):
        """.. method:: M(mode, psi_modes, det_mod)

            Applies modulus constraint to psi_modes(mode) for a given position.

            :param list psi_modes: A list of CXData instances containing all modes at a given position.
            :param np.ndarray det_mod: Modulus of measured diffraction pattern.

        """
        if isinstance(psi, CXData):
            return ifft2(det_mod * exp(complex(0., 1.) * angle(fft2(psi))))
        elif isinstance(psi, CXModal):
            mode_sum = CXModal.modal_sum(abs(fft2(psi))**2.0)**0.5
            return ifft2((fft2(psi)/(mode_sum))*det_mod)
コード例 #2
0
ファイル: CXPhasing2.py プロジェクト: necroen/cxphasing
 def mse_worker(args):
     i_range, psi, det_mod = args
     indvdl_mse = []
     p = det_mod[0].data[0].shape[0]
     for i in i_range:
         psi_sum = CXModal.modal_sum(abs(fft2(psi.getat(i))))
         indvdl_mse.append(sp.sum((abs(psi_sum - det_mod[i]) ** 2.).data[0]) / sp.sum(det_mod[i].data[0] ** 2.))
     return indvdl_mse
コード例 #3
0
ファイル: CXPhasing2.py プロジェクト: necroen/cxphasing
    def error(self, psi, det_mod):
        """.. method:: error(psi, det_mod)

            Calculates the MSE at a given position given the modes at that position.

            :param CXModal psi: A list of CXData instances containing all modes at a given position.
            :param np.ndarray det_mod: Modulus of measured diffraction pattern.

        """
        mode_sum = CXModal.modal_sum(abs(fft2(psi)))
        return (sp.sum((abs(mode_sum - det_mod) ** 2.).data[0]) / sp.sum(det_mod.data[0] ** 2.))**0.5
コード例 #4
0
ファイル: CXPhasing2.py プロジェクト: necroen/cxphasing
    def simulate_data(self):
        CXP.log.info('Simulating diffraction patterns.')
        self.sample = CXData()
        self.sample.load(CXP.io.simulation_sample_filename[0])
        self.sample.data[0] = self.sample.data[0].astype(float)
        self.sample.normalise(val=0.8)
        self.sample.data[0]+=0.2
        self.input_probe = CXModal()
        if len(CXP.io.simulation_sample_filename)>1:
            ph = CXData()
            ph.load(CXP.io.simulation_sample_filename[1])
            ph.data[0] = ph.data[0].astype(float)
            ph.normalise(val=np.pi/3)
            self.sample.data[0] = self.sample.data[0]*exp(complex(0., 1.)*ph.data[0])
        p = self.sample.data[0].shape[0]
        ham_window = sp.hamming(p)[:,np.newaxis]*sp.hamming(p)[np.newaxis,:]
        sample_large = CXData(data=sp.zeros((CXP.ob_p, CXP.ob_p), complex))
        sample_large.data[0][CXP.ob_p/2-p/2:CXP.ob_p/2+p/2, CXP.ob_p/2-p/2:CXP.ob_p/2+p/2] = self.sample.data[0]*ham_window

        ker = sp.arange(0, p)
        fwhm = p/3.0
        radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2])
        gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 )
        ortho_modes = lambda n1, n2 : gaussian*np.sin(n1*math.pi*ker/p)[:,np.newaxis]*np.sin(n2*math.pi*ker/p)[np.newaxis, :]
        mode_generator = lambda : sp.floor(4*sp.random.random(2))+1

        used_modes = []
        self.input_psi = CXModal()
        
        for mode in range(CXP.reconstruction.probe_modes):
            if mode==0:
                new_mode = [1,1]
            else:
                new_mode = list(mode_generator())
                while new_mode in used_modes:
                    new_mode = list(mode_generator())
            used_modes.append(new_mode)
            CXP.log.info('Simulating mode {:d}: [{:d}, {:d}]'.format(mode, int(new_mode[0]), int(new_mode[1])))
            ph_func = gauss_smooth(np.random.random((p,p)), 10)
            self.input_probe.modes.append(CXData(name='probe{:d}'.format(mode), 
                data=ortho_modes(new_mode[0], new_mode[1])*exp(complex(0.,np.pi)*ph_func/ph_func.max())))
        
        self.input_probe.normalise()
        self.input_probe.orthogonalise()

        for mode in range(CXP.reconstruction.probe_modes):
            p2 = p/2
            x, y = self.positions.correct
            self.input_psi.modes.append(CXData(name='input_psi_mode{:d}'.format(mode), data=[]))
            
            for i in xrange(len(x)):
                if i%(len(x)/10)==0.:
                    CXP.log.info('Simulating diff patt {:d}'.format(i))
                tmp = (CXData.shift(sample_large, -1.0*(x[i]-CXP.ob_p/2), -1.0*(y[i]-CXP.ob_p/2))
                        [CXP.ob_p/2-p2:CXP.ob_p/2+p2, CXP.ob_p/2-p2:CXP.ob_p/2+p2]*
                        self.input_probe[mode][0])
                self.input_psi[mode].data.append(tmp.data[0])

        # Add modes incoherently
        self.det_mod = CXModal.modal_sum(abs(fft2(self.input_psi)))
        self.det_mod.save(path=CXP.io.base_dir+'/'+CXP.io.scan_id+'/raw_data/{:s}.npy'.format('det_mod'))