def confidence_interval(numbers): m = mean(numbers) confidence_level = 0.95 z = (1-confidence_level) / 2 sd = standard_deviation(numbers) n = squareroot(len(numbers)) return [subtraction(multiplication(division(n, sd), z), m), addition(multiplication(division(n, sd), z), m)]
def conf_interval(data): x = mean(data) dev = psd(data) z = 1.96 # for 95% confidence standard_error = division(dev, squareroot(len(data))) conf_upper_level = round(addition(x, multiplication(z, standard_error)), 2) conf_lower_level = round(subtraction(multiplication(z, standard_error), x), 2) return conf_upper_level, conf_lower_level
def standard_deviation(numbers): # complete n = len(numbers) c = 0 t = 0 for i in range(0, n, 1): c = subtraction(mean(numbers), numbers[i]) t = addition(square(c), t) x = division((n - 1), t) return squareroot(x)
def confidence_interval(data): z_value = 1.05 mean =sample_mean(data) sd = pop_standard_dev(data) x = len(data) y = division(squareroot(x), sd) margin_of_error = multiplication(z_value, y) a = subtraction(mean, margin_of_error) b = addition(mean, margin_of_error) return a, b
def ssd(data): total = 0 sample = random.randint(1, len(data)) new_sample = Getsample(data, sample) new_mean = mean(new_sample) for numb in new_sample: result = subtraction(numb, new_mean) sq = square(result) total = addition(total, sq) n = len(new_sample) d = division(subtraction(1, n), total) samp_sd = squareroot(d) return samp_sd
def sample_st_deviation(data, sample_size): dev = 0 sample = getSample(data, sample_size) sample_values = len(sample) x_bar = sample_mean() x = sample_values n = subtraction(sample_values, 1) for dev in sample: dev = subtraction(x, x_bar) square_x_bar = square(dev) add = addition(square_x_bar, square_x_bar) divide = division(add, n) return squareroot(divide)
def squareroot(self, a): self.result = squareroot(a) return self.result
def population_SD(data): SDvalue = squareroot(variance(data)) return SDvalue
def pop_standard_dev(data): n = len(data) u = population_mean(data) return squareroot( sum([(element - u)**2 for element in data]) / (len(data) - 1))
def psd(numbers): return squareroot(variance(numbers))