# We add the gyroscope data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values/ DataSet.add_numerical_dataset('gyroscope_phone.csv', 'timestamps', ['x', 'y', 'z'], 'avg', 'gyr_phone_') DataSet.add_numerical_dataset('gyroscope_smartwatch.csv', 'timestamps', ['x', 'y', 'z'], 'avg', 'gyr_watch_') # We add the heart rate (continuous numerical measurements) and aggregate by averaging again DataSet.add_numerical_dataset('heart_rate_smartwatch.csv', 'timestamps', ['rate'], 'avg', 'hr_watch_') # We add the labels provided by the users. These are categorical events that might overlap. We add them # as binary attributes (i.e. add a one to the attribute representing the specific value for the label if it # occurs within an interval). DataSet.add_event_dataset('labels.csv', 'label_start', 'label_end', 'label', 'binary') # We add the amount of light sensed by the phone (continuous numerical measurements) and aggregate by averaging again DataSet.add_numerical_dataset('light_phone.csv', 'timestamps', ['lux'], 'avg', 'light_phone_') # We add the magnetometer data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values DataSet.add_numerical_dataset('magnetometer_phone.csv', 'timestamps', ['x', 'y', 'z'], 'avg', 'mag_phone_') DataSet.add_numerical_dataset('magnetometer_smartwatch.csv', 'timestamps', ['x', 'y', 'z'], 'avg', 'mag_watch_') # We add the pressure sensed by the phone (continuous numerical measurements) and aggregate by averaging again DataSet.add_numerical_dataset('pressure_phone.csv', 'timestamps', ['pressure'], 'avg', 'press_phone_')
def main(): # Set a granularity (the discrete step size of our time series data) and choose if all resulting datasets should # be saved. A course-grained granularity of one instance per minute, and a fine-grained one with four instances # per second are used. GRANULARITIES = [60000, 250] SAVE_VERSIONS = False # We can call Path.mkdir(exist_ok=True) to make any required directories if they don't already exist. [path.mkdir(exist_ok=True, parents=True) for path in [DATASET_PATH, RESULT_PATH]] # Create object to visualize the data and save figures DataViz = VisualizeDataset(module_path=__file__) datasets = [] for milliseconds_per_instance in GRANULARITIES: print( f'Creating numerical datasets from files in {DATASET_PATH} using granularity {milliseconds_per_instance}.') # Create an initial dataset object with the base directory for our data and a granularity and add selected # measurements to it data_engineer = CreateDataset(base_dir=DATASET_PATH, granularity=milliseconds_per_instance) # Add the accelerometer data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values data_engineer.add_numerical_dataset(file='accelerometer_phone.csv', timestamp_col='timestamps', value_cols=['x', 'y', 'z'], aggregation='avg', prefix='acc_phone_') data_engineer.add_numerical_dataset(file='accelerometer_smartwatch.csv', timestamp_col='timestamps', value_cols=['x', 'y', 'z'], aggregation='avg', prefix='acc_watch_') # Add the gyroscope data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values data_engineer.add_numerical_dataset(file='gyroscope_phone.csv', timestamp_col='timestamps', value_cols=['x', 'y', 'z'], aggregation='avg', prefix='gyr_phone_') data_engineer.add_numerical_dataset(file='gyroscope_smartwatch.csv', timestamp_col='timestamps', value_cols=['x', 'y', 'z'], aggregation='avg', prefix='gyr_watch_') # Add the heart rate (continuous numerical measurements) and aggregate by averaging the values data_engineer.add_numerical_dataset(file='heart_rate_smartwatch.csv', timestamp_col='timestamps', value_cols=['rate'], aggregation='avg', prefix='hr_watch_') # Add the labels provided by the users as binary attributes (i.e. add a one to the attribute representing the # specific value for a label if it occurs within an interval). These are categorical events that might overlap. data_engineer.add_event_dataset(file='labels.csv', start_timestamp_col='label_start', end_timestamp_col='label_end', value_col='label', aggregation='binary') # Add the amount of light sensed by the phone (continuous numerical measurements) and aggregate by averaging data_engineer.add_numerical_dataset(file='light_phone.csv', timestamp_col='timestamps', value_cols=['lux'], aggregation='avg', prefix='light_phone_') # Add the magnetometer data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values data_engineer.add_numerical_dataset(file='magnetometer_phone.csv', timestamp_col='timestamps', value_cols=['x', 'y', 'z'], aggregation='avg', prefix='mag_phone_') data_engineer.add_numerical_dataset(file='magnetometer_smartwatch.csv', timestamp_col='timestamps', value_cols=['x', 'y', 'z'], aggregation='avg', prefix='mag_watch_') # Add the pressure sensed by the phone (continuous numerical measurements) and aggregate by averaging again data_engineer.add_numerical_dataset(file='pressure_phone.csv', timestamp_col='timestamps', value_cols=['pressure'], aggregation='avg', prefix='press_phone_') # Get the resulting pandas data table dataset = data_engineer.data_table # Create boxplots DataViz.plot_dataset_boxplot(dataset=dataset, cols=['acc_phone_x', 'acc_phone_y', 'acc_phone_z', 'acc_watch_x', 'acc_watch_y', 'acc_watch_z']) # Plot all data DataViz.plot_dataset(data_table=dataset, columns=['acc_', 'gyr_', 'hr_watch_rate', 'light_phone_lux', 'mag_', 'press_phone_', 'label'], match=['like', 'like', 'like', 'like', 'like', 'like', 'like', 'like'], display=['line', 'line', 'line', 'line', 'line', 'line', 'points', 'points']) # Print a summary of the dataset util.print_statistics(dataset=dataset) datasets.append(copy.deepcopy(dataset)) # Save the various versions of the created datasets with logical filenames if needed if SAVE_VERSIONS: dataset.to_csv(RESULT_PATH / f'chapter2_result_{milliseconds_per_instance}') # Make a table like the one shown in the book, comparing the two datasets produced util.print_latex_table_statistics_two_datasets(dataset1=datasets[0], dataset2=datasets[1]) # Finally, store the last dataset we generated (250 ms) dataset.to_csv(RESULT_PATH / RESULT_FNAME)
# DataSetCS.add_numerical_dataset('accelerometer_phone.csv', 'timestamps', ['x','y','z'], 'avg', 'acc_phone_') # DataSetCS.add_numerical_dataset('accelerometer_smartwatch.csv', 'timestamps', ['x','y','z'], 'avg', 'acc_watch_') # We add the gyroscope data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values/ DataSetOwn.add_numerical_dataset('gyro_custom.csv', 'timestamps', ['x','y','z'], 'avg', 'gyr_phone_') # DataSetCS.add_numerical_dataset('gyroscope_phone.csv', 'timestamps', ['x','y','z'], 'avg', 'gyr_phone_') # DataSetCS.add_numerical_dataset('gyroscope_smartwatch.csv', 'timestamps', ['x','y','z'], 'avg', 'gyr_watch_') # We add the heart rate (continuous numerical measurements) and aggregate by averaging again # DataSetCS.add_numerical_dataset('heart_rate_smartwatch.csv', 'timestamps', ['rate'], 'avg', 'hr_watch_') # We add the labels provided by the users. These are categorical events that might overlap. We add them # as binary attributes (i.e. add a one to the attribute representing the specific value for the label if it # occurs within an interval). DataSetOwn.add_event_dataset('labels_custom.csv', 'label_start', 'label_end', 'label', 'binary') # DataSetCS.add_event_dataset('labels.csv', 'label_start', 'label_end', 'label', 'binary') # We add the amount of light sensed by the phone (continuous numerical measurements) and aggregate by averaging again # amount of light sensed is missing from our dataset # DataSetCS.add_numerical_dataset('light_phone.csv', 'timestamps', ['lux'], 'avg', 'light_phone_') # We add the magnetometer data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values DataSetOwn.add_numerical_dataset('mag_custom.csv', 'timestamps', ['x','y','z'], 'avg', 'mag_phone_') DataSetOwn.add_numerical_dataset('press_custom.csv', 'timestamps', ['pressure'], 'avg', 'press_phone_') # DataSetCS.add_numerical_dataset('magnetometer_phone.csv', 'timestamps', ['x','y','z'], 'avg', 'mag_phone_') # DataSetCS.add_numerical_dataset('magnetometer_smartwatch.csv', 'timestamps', ['x','y','z'], 'avg', 'mag_watch_') # We add the pressure sensed by the phone (continuous numerical measurements) and aggregate by averaging again DataSetOwn.add_numerical_dataset('pedom_custom.csv', 'timestamps', ['steps', 'distance'], 'avg', 'pedom_phone_')
# We add the accelerometer data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values/ DataSet.add_numerical_dataset('accelerometer-kx023.csv_out.csv', 'timestamp', ['x', 'y', 'z'], 'avg', 'acc_phone_') print("first set") # We add the gyroscope data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values/ DataSet.add_numerical_dataset('orientation.csv_out.csv', 'timestamp', ['x', 'y', 'z'], 'avg', 'gyr_phone_') print("second set") # We add the labels provided by the users. These are categorical events that might overlap. We add them # as binary attributes (i.e. add a one to the attribute representing the specific value for the label if it # occurs within an interval). DataSet.add_event_dataset('status.csv', 'timestampBeg', 'timestampEnd', 'label', 'binary') # We add the amount of light sensed by the phone (continuous numerical measurements) and aggregate by averaging again DataSet.add_numerical_dataset('light-bh1745.csv_out.csv', 'timestamp', ['lux'], 'avg', 'light_phone_') print("third set") # We add the magnetometer data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values DataSet.add_numerical_dataset('mag-akm09911.csv_out.csv', 'timestamp', ['x', 'y', 'z'], 'avg', 'mag_phone_') print("fourth set") # We add the pressure sensed by the phone (continuous numerical measurements) and aggregate by averaging again # Get the resulting pandas data table dataset = DataSet.data_table
#dataset.add_numerical_dataset('accelerometer_smartwatch.csv', 'timestamps', ['x','y','z'], 'avg', 'acc_watch_') # We add the gyroscope data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values dataset.add_numerical_dataset('heart_rate.csv', 'time', ['heartrate'], 'avg', '') dataset.add_numerical_dataset('steps.csv', 'time', ['steps'], 'avg', '') #dataset.add_numerical_dataset('labels.csv', 'time', ['label'], 'avg', '') # We add the heart rate (continuous numerical measurements) and aggregate by averaging again #dataset.add_numerical_dataset('heart_rate_smartwatch.csv', 'timestamps', ['rate'], 'avg', 'hr_watch_') # We add the labels provided by the users. These are categorical events that might overlap. We add them # as binary attributes (i.e. add a one to the attribute representing the specific value for the label if it # occurs within an interval). dataset.add_event_dataset('labels.csv', 'time', 'label', 'sum') # We add the amount of light sensed by the phone (continuous numerical measurements) and aggregate by averaging #dataset.add_numerical_dataset('light_phone.csv', 'timestamps', ['lux'], 'avg', 'light_phone_') # We add the magnetometer data (continuous numerical measurements) of the phone and the smartwatch # and aggregate the values per timestep by averaging the values #dataset.add_numerical_dataset('magnetometer_phone.csv', 'timestamps', ['x','y','z'], 'avg', 'mag_phone_') #dataset.add_numerical_dataset('magnetometer_smartwatch.csv', 'timestamps', ['x','y','z'], 'avg', 'mag_watch_') # We add the pressure sensed by the phone (continuous numerical measurements) and aggregate by averaging again #dataset.add_numerical_dataset('pressure_phone.csv', 'timestamps', ['pressure'], 'avg', 'press_phone_') # Get the resulting pandas data table dataset = dataset.data_table #dataset = dataset[dataset['heartrate'].notnull()]
] datasets = [] for milliseconds_per_instance in GRANULARITIES: print( f'Creating numerical datasets from files in {DATASET_PATH} using granularity {milliseconds_per_instance}.' ) # Create an initial dataset object with the base directory for our data and a granularity dataset = CreateDataset(DATASET_PATH, milliseconds_per_instance) # Add the selected measurements to it. dataset.add_numerical_dataset('accelerometer.csv', 'timestamp', ['x', 'y', 'z'], 'avg', 'acc_phone_', True) dataset.add_event_dataset('labels.csv', 'label_start', 'label_end', 'label', 'binary', True) dataset.add_numerical_dataset('gyroscope.csv', 'timestamp', ['x', 'y', 'z'], 'avg', 'gyr_phone_', True) dataset.add_numerical_dataset('barometer.csv', 'timestamp', ['x'], 'avg', 'bar_phone_', True) dataset.add_numerical_dataset('linear_accelerometer.csv', 'timestamp', ['x', 'y', 'z'], 'avg', 'lin_acc_phone_', True) # dataset.add_numerical_dataset('location.csv', 'timestamp', ['latitude','longitude','height', 'velocity', 'direction', 'horizontal_accuracy', 'vertical_accuracy'], 'avg', 'loc_phone_', True) dataset.add_numerical_dataset('magnetometer.csv', 'timestamp', ['x', 'y', 'z'], 'avg', 'mag_phone_', True) dataset.add_numerical_dataset('proximity.csv', 'timestamp', ['distance'], 'avg', 'prox_phone_', True) # Get the resulting pandas data table dataset = dataset.data_table