class Trainer(): """ Trainer Class Trains the Natural Language Understanding Engine. """ def __init__(self): """ Initializes the class. """ self.Helpers = Helpers("Train") self.intentMap = {} self.words = [] self.classes = [] self.dataCorpus = [] self.Model = Model() self.Data = Data() self.Helpers.logger.info("Trainer class initialized.") def setupData(self): """ Prepares the data. """ self.trainingData = self.Data.loadTrainingData() self.words, self.classes, self.dataCorpus, self.intentMap = self.Data.prepareData( self.trainingData) self.x, self.y = self.Data.finaliseData(self.classes, self.dataCorpus, self.words) self.Helpers.logger.info("NLU Training Data Ready") def setupEntities(self): """ Prepares the entities. """ if self.Helpers.confs["NLU"]["Entities"] == "Mitie": self.entityController = Entities() self.entityController.trainEntities( self.Helpers.confs["NLU"]["Mitie"]["ModelLocation"], self.trainingData) self.Helpers.logger.info("NLU Trainer Entities Ready") def trainModel(self): """ Trains the model. """ while True: self.Helpers.logger.info("Ready To Begin Training ? (Yes/No)") userInput = input(">") if userInput == 'Yes': break if userInput == 'No': exit() self.setupData() self.setupEntities() self.Model.trainDNN(self.x, self.y, self.words, self.classes, self.intentMap) self.Helpers.logger.info("NLU Model Trained")
class Trainer(): ############################################################### # # Sets up all default requirements and placeholders # needed for the NLU engine to run. # # - Helpers: Useful global functions # - JumpWay/jumpWayClient: iotJumpWay class and connection # - Logging: Logging class # ############################################################### def __init__(self): self.Helpers = Helpers() self._confs = self.Helpers.loadConfigs() self.LogFile = self.Helpers.setLogFile(self._confs["aiCore"]["Logs"] + "Train/") self.intentMap = {} self.words = [] self.classes = [] self.dataCorpus = [] self.Model = Model() self.Data = Data() def setupData(self): self.trainingData = self.Data.loadTrainingData() self.words, self.classes, self.dataCorpus, self.intentMap = self.Data.prepareData( self.trainingData) self.x, self.y = self.Data.finaliseData(self.classes, self.dataCorpus, self.words) self.Helpers.logMessage(self.LogFile, "TRAIN", "INFO", "NLU Training Data Ready") def setupEntities(self): if self._confs["NLU"]["Entities"] == "Mitie": self.entityController = Entities() self.entityController.trainEntities( self._confs["NLU"]["Mitie"]["ModelLocation"], self.trainingData) self.Helpers.logMessage(self.LogFile, "TRAIN", "OK", "NLU Trainer Entities Ready") def trainModel(self): while True: self.Helpers.logMessage(self.LogFile, "TRAIN", "ACTION", "Ready To Begin Training ? (Yes/No)") userInput = input(">") if userInput == 'Yes': break if userInput == 'No': exit() self.setupData() self.setupEntities() humanStart, trainingStart = self.Helpers.timerStart() self.Model.trainDNN(self.x, self.y, self.words, self.classes, self.intentMap) trainingEnd, trainingTime, humanEnd = self.Helpers.timerEnd( trainingStart) self.Helpers.logMessage( self.LogFile, "TRAIN", "OK", "NLU Model Trained At " + humanEnd + " In " + str(trainingEnd) + " Seconds")
class Trainer(): """ ALL Detection System 2019 Chatbot Training Class Trains the ALL Detection System 2019 Chatbot. """ def __init__(self): """ Initializes the Training class. """ self.Helpers = Helpers() self.LogFile = self.Helpers.setLogFile( self.Helpers.confs["System"]["Logs"] + "Train/") self.intentMap = {} self.words = [] self.classes = [] self.dataCorpus = [] self.Model = Model() self.Data = Data() def setupData(self): """ Prepares the data. """ self.trainingData = self.Data.loadTrainingData() self.words, self.classes, self.dataCorpus, self.intentMap = self.Data.prepareData( self.trainingData) self.x, self.y = self.Data.finaliseData(self.classes, self.dataCorpus, self.words) self.Helpers.logMessage(self.LogFile, "TRAIN", "INFO", "NLU Training Data Ready") def setupEntities(self): """ Prepares the entities. """ if self.Helpers.confs["NLU"]["Entities"] == "Mitie": self.entityController = Entities() self.entityController.trainEntities( self.Helpers.confs["NLU"]["Mitie"]["ModelLocation"], self.trainingData) self.Helpers.logMessage(self.LogFile, "TRAIN", "OK", "NLU Trainer Entities Ready") def trainModel(self): """ Trains the model. """ while True: self.Helpers.logMessage(self.LogFile, "TRAIN", "ACTION", "Ready To Begin Training ? (Yes/No)") userInput = input(">") if userInput == 'Yes': break if userInput == 'No': exit() self.setupData() self.setupEntities() humanStart, trainingStart = self.Helpers.timerStart() self.Model.trainDNN(self.x, self.y, self.words, self.classes, self.intentMap) trainingEnd, trainingTime, humanEnd = self.Helpers.timerEnd( trainingStart) self.Helpers.logMessage( self.LogFile, "TRAIN", "OK", "NLU Model Trained At " + humanEnd + " In " + str(trainingEnd) + " Seconds")
class Engine(): """ Engine Class Core functions for the NLU Engine. """ def __init__(self, isAudio): """ Initializes the class. """ self.Helpers = Helpers("Engine") self.ner = None self.user = {} #self.bluetoothCon() self.data() self.entities() #self.iotJumpWayCon() self.model() self.session() self.thresholds() if isAudio: self.speech() self.Helpers.logger.info("Engine class initialized.") def bluetoothCon(self): """ Initializes the Bluetooth connection. """ self.Bluetooth = BluetoothConnect() self.Bluetooth.connect() def data(self): """ Initializes the data. """ self.Data = Data() self.trainingData = self.Data.loadTrainingData() self.trainedData = self.Data.loadTrainedData() self.trainedWords = self.trainedData["words"] self.trainedClasses = self.trainedData["classes"] self.x = self.trainedData["x"] self.y = self.trainedData["y"] self.intentMap = self.trainedData["intentMap"][0] def doExtension(self, extension, entities, exEntities, extensionResponses): """ Executes an extension. """ classParts = extension.split(".") classFolder = classParts[0] className = classParts[1] theEntities = None if exEntities != False: theEntities = entities module = __import__(classParts[0] + "." + classParts[1], globals(), locals(), [className]) extensionClass = getattr(module, className)() response = getattr(extensionClass, classParts[2])(extensionResponses, theEntities) return response def entities(self): """ Initializes the entities. """ self.entityController = Entities() self.ner = self.entityController.restoreNER() def entitiesCheck(self, entityHolder, theIntent, clearEntities): """ Checks entities. """ if not len(entityHolder) and len(theIntent["entities"]): response, entities = self.entityController.replaceResponseEntities( random.choice(theIntent["fallbacks"]), entityHolder) extension, extensionResponses, exEntities = self.Extensions.setExtension( theIntent) elif clearEntities: entities = [] response = random.choice(theIntent["responses"]) extension, extensionResponses, exEntities = self.Extensions.setExtension( theIntent) else: response, entities = self.entityController.replaceResponseEntities( random.choice(theIntent["responses"]), entityHolder) extension, extensionResponses, exEntities = self.Extensions.setExtension( theIntent) return response, entities, extension, extensionResponses, exEntities def fallbackCheck(self, fallback, theIntent, entityHolder): """ Checks if fallback. """ if fallback and fallback in theIntent and len(theIntent["fallbacks"]): response, entities = self.entityController.replaceResponseEntities( random.choice(theIntent["fallbacks"]), entityHolder) extension, extensionResponses, exEntities = None, [], None else: response, entities = self.entityController.replaceResponseEntities( random.choice(theIntent["responses"]), entityHolder) extension, extensionResponses, exEntities = self.Extensions.setExtension( theIntent) return response, entities, extension, extensionResponses, exEntities def model(self): """ Initializes the model. """ self.Model = Model() self.Context = Context() self.Extensions = Extensions() self.tmodel = self.Model.buildDNN(self.x, self.y) def session(self): """ Initializes a NLU sesiion. Initiates empty guest user session, GeniSys will ask the user verify their GeniSys user by speaking or typing if it does not know who it is speaking to. """ self.userID = 0 if not self.userID in self.user: self.user[self.userID] = {} self.user[self.userID]["history"] = {} def respond(self, status, sentence, intent, confidence, response, cIn, cOut, cCurrent, extension, entities): """ Forms the response. """ return { "Response": status, "ResponseData": [{ "Received": sentence, "Intent": intent, "Confidence": confidence, "Response": response, "Context": [{ "In": cIn, "Out": cOut, "Current": cCurrent }], "Extension": extension, "Entities": entities }] } def speech(self): """ Initializes the TTS feature. """ self.TTS = TTS() def thresholds(self): """ Sets thresholds Sets the threshold for the NLU engine, this can be changed using arguments to commandline programs or paramters for API calls. """ self.threshold = self.Helpers.confs["NLU"]["Threshold"] self.entityThrshld = self.Helpers.confs["NLU"]["Mitie"]["Threshold"]
class Chatbot(): """ ALL Detection System 2019 Chatbot Class The ALL Detection System 2019 Chatbot. """ def __init__(self): """ Initializes the Chatbot class. """ self.isTraining = False self.ner = None self.Helpers = Helpers() self.user = {} self.LogFile = self.Helpers.setLogFile( self.Helpers.confs["System"]["Logs"] + "NLU/") self.ChatLogFile = self.Helpers.setLogFile( self.Helpers.confs["System"]["Logs"] + "Chat/") def initiateSession(self): """ Initializes a Chatbot sesiion. Initiates empty guest user session, GeniSys will ask the user verify their GeniSys user by speaking or typing if it does not know who it is speaking to. """ self.userID = 0 if not self.userID in self.user: self.user[self.userID] = {} self.user[self.userID]["history"] = {} def initNLU(self): """ Initializes a Chatbot sesiion. Initiates the NLU setting up the data, NLU / entities models and required modules such as context and extensions. """ self.Data = Data() self.trainingData = self.Data.loadTrainingData() self.trainedData = self.Data.loadTrainedData() self.Model = Model() self.Context = Context() self.Extensions = Extensions() self.restoreData() self.restoreNER() self.restoreNLU() self.initiateSession() self.setThresholds() def commandsCallback(self, topic, payload): """ iotJumpWay callback function. The callback function that is triggerend in the event of a command communication from the iotJumpWay. """ self.Helpers.logMessage( self.LogFile, "iotJumpWay", "INFO", "Recieved iotJumpWay Command Data : " + str(payload)) commandData = json.loads(payload.decode("utf-8")) def restoreData(self): """ Restores the training data. Sets the local trained data using data retrieved above """ self.trainedWords = self.trainedData["words"] self.trainedClasses = self.trainedData["classes"] self.x = self.trainedData["x"] self.y = self.trainedData["y"] self.intentMap = self.trainedData["intentMap"][0] def loadEntityController(self): """ Initiates the entity extractor class """ self.entityController = Entities() def restoreNER(self): """ Loads entity controller and restores the NER model """ self.loadEntityController() self.ner = self.entityController.restoreNER() def restoreNLU(self): """ Restores the NLU model """ self.tmodel = self.Model.buildDNN(self.x, self.y) def setThresholds(self): """ Sets thresholds Sets the threshold for the NLU engine, this can be changed using arguments to commandline programs or paramters for API calls. """ self.threshold = self.Helpers.confs["NLU"]["Threshold"] self.entityThrshld = self.Helpers.confs["NLU"]["Mitie"]["Threshold"] def communicate(self, sentence): """ Responds to the user First checks to ensure that the program is not training, then parses any entities that may be in the intent, then checks context and extensions before providing a response. """ if self.isTraining == False: parsed, fallback, entityHolder, parsedSentence = self.entityController.parseEntities( sentence, self.ner, self.trainingData) classification = self.Model.predict(self.tmodel, parsedSentence, self.trainedWords, self.trainedClasses) if len(classification) > 0: clearEntities = False theIntent = self.trainingData["intents"][self.intentMap[ classification[0][0]]] if len(entityHolder) and not len(theIntent["entities"]): clearEntities = True if (self.Context.checkSessionContext(self.user[self.userID], theIntent)): if self.Context.checkClearContext(theIntent, 0): self.user[self.userID]["context"] = "" contextIn, contextOut, contextCurrent = self.Context.setContexts( theIntent, self.user[self.userID]) if not len(entityHolder) and len(theIntent["entities"]): response, entities = self.entityController.replaceResponseEntities( random.choice(theIntent["fallbacks"]), entityHolder) extension, extensionResponses, exEntities = self.Extensions.setExtension( theIntent) elif clearEntities: entityHolder = [] response = random.choice(theIntent["responses"]) extension, extensionResponses, exEntities = self.Extensions.setExtension( theIntent) else: response, entities = self.entityController.replaceResponseEntities( random.choice(theIntent["responses"]), entityHolder) extension, extensionResponses, exEntities = self.Extensions.setExtension( theIntent) if extension != None: classParts = extension.split(".") classFolder = classParts[0] className = classParts[1] theEntities = None if exEntities != False: theEntities = entities module = __import__( classParts[0] + "." + classParts[1], globals(), locals(), [className]) extensionClass = getattr(module, className)() response = getattr(extensionClass, classParts[2])(extensionResponses, theEntities) return { "Response": "OK", "ResponseData": [{ "Received": sentence, "Intent": classification[0][0], "Confidence": str(classification[0][1]), "Response": response, "Context": [{ "In": contextIn, "Out": contextOut, "Current": contextCurrent }], "Extension": extension, "Entities": entityHolder }] } else: self.user[self.userID]["context"] = "" contextIn, contextOut, contextCurrent = self.Context.setContexts( theIntent, self.user[self.userID]) if fallback and fallback in theIntent and len( theIntent["fallbacks"]): response, entities = self.entityController.replaceResponseEntities( random.choice(theIntent["fallbacks"]), entityHolder) extension, extensionResponses = None, [] else: response, entities = self.entityController.replaceResponseEntities( random.choice(theIntent["responses"]), entityHolder) extension, extensionResponses, exEntities = self.Extensions.setExtension( theIntent) if extension != None: classParts = extension.split(".") classFolder = classParts[0] className = classParts[1] theEntities = None if exEntities != False: theEntities = entities module = __import__( classParts[0] + "." + classParts[1], globals(), locals(), [className]) extensionClass = getattr(module, className)() response = getattr(extensionClass, classParts[2])(extensionResponses, theEntities) else: response = self.entityController.replaceResponseEntities( random.choice(theIntent["responses"]), entityHolder) if (type(response) == tuple): response = response[0] return { "Response": "OK", "ResponseData": [{ "Received": sentence, "Intent": classification[0][0], "Confidence": str(classification[0][1]), "Response": response, "Context": [{ "In": contextIn, "Out": contextOut, "Current": contextCurrent }], "Extension": extension, "Entities": entityHolder }] } else: contextCurrent = self.Context.getCurrentContext( self.user[self.userID]) return { "Response": "FAILED", "ResponseData": [{ "Received": sentence, "Intent": "UNKNOWN", "Confidence": "NA", "Responses": [], "Response": random.choice( self.Helpers.confs["NLU"]["defaultResponses"]), "Context": [{ "In": "NA", "Out": "NA", "Current": contextCurrent }], "Extension": "NA", "Entities": entityHolder }] } else: return { "Response": "FAILED", "ResponseData": [{ "Status": "Training", "Message": "NLU Engine is currently training" }] }