コード例 #1
0
class Trainer():
    """ Trainer Class

	Trains the Natural Language Understanding Engine.
	"""
    def __init__(self):
        """ Initializes the class. """

        self.Helpers = Helpers("Train")

        self.intentMap = {}
        self.words = []
        self.classes = []
        self.dataCorpus = []

        self.Model = Model()
        self.Data = Data()

        self.Helpers.logger.info("Trainer class initialized.")

    def setupData(self):
        """ Prepares the data. """

        self.trainingData = self.Data.loadTrainingData()

        self.words, self.classes, self.dataCorpus, self.intentMap = self.Data.prepareData(
            self.trainingData)
        self.x, self.y = self.Data.finaliseData(self.classes, self.dataCorpus,
                                                self.words)

        self.Helpers.logger.info("NLU Training Data Ready")

    def setupEntities(self):
        """ Prepares the entities. """

        if self.Helpers.confs["NLU"]["Entities"] == "Mitie":
            self.entityController = Entities()
            self.entityController.trainEntities(
                self.Helpers.confs["NLU"]["Mitie"]["ModelLocation"],
                self.trainingData)

            self.Helpers.logger.info("NLU Trainer Entities Ready")

    def trainModel(self):
        """ Trains the model. """

        while True:
            self.Helpers.logger.info("Ready To Begin Training ? (Yes/No)")
            userInput = input(">")

            if userInput == 'Yes': break
            if userInput == 'No': exit()

        self.setupData()
        self.setupEntities()

        self.Model.trainDNN(self.x, self.y, self.words, self.classes,
                            self.intentMap)

        self.Helpers.logger.info("NLU Model Trained")
コード例 #2
0
class Trainer():

    ###############################################################
    #
    # Sets up all default requirements and placeholders
    # needed for the NLU engine to run.
    #
    # - Helpers: Useful global functions
    # - JumpWay/jumpWayClient: iotJumpWay class and connection
    # - Logging: Logging class
    #
    ###############################################################

    def __init__(self):

        self.Helpers = Helpers()
        self._confs = self.Helpers.loadConfigs()
        self.LogFile = self.Helpers.setLogFile(self._confs["aiCore"]["Logs"] +
                                               "Train/")

        self.intentMap = {}
        self.words = []
        self.classes = []
        self.dataCorpus = []

        self.Model = Model()
        self.Data = Data()

    def setupData(self):

        self.trainingData = self.Data.loadTrainingData()

        self.words, self.classes, self.dataCorpus, self.intentMap = self.Data.prepareData(
            self.trainingData)
        self.x, self.y = self.Data.finaliseData(self.classes, self.dataCorpus,
                                                self.words)

        self.Helpers.logMessage(self.LogFile, "TRAIN", "INFO",
                                "NLU Training Data Ready")

    def setupEntities(self):

        if self._confs["NLU"]["Entities"] == "Mitie":
            self.entityController = Entities()
            self.entityController.trainEntities(
                self._confs["NLU"]["Mitie"]["ModelLocation"],
                self.trainingData)
            self.Helpers.logMessage(self.LogFile, "TRAIN", "OK",
                                    "NLU Trainer Entities Ready")

    def trainModel(self):

        while True:
            self.Helpers.logMessage(self.LogFile, "TRAIN", "ACTION",
                                    "Ready To Begin Training ? (Yes/No)")
            userInput = input(">")

            if userInput == 'Yes': break
            if userInput == 'No': exit()

        self.setupData()
        self.setupEntities()

        humanStart, trainingStart = self.Helpers.timerStart()

        self.Model.trainDNN(self.x, self.y, self.words, self.classes,
                            self.intentMap)

        trainingEnd, trainingTime, humanEnd = self.Helpers.timerEnd(
            trainingStart)

        self.Helpers.logMessage(
            self.LogFile, "TRAIN", "OK", "NLU Model Trained At " + humanEnd +
            " In " + str(trainingEnd) + " Seconds")
コード例 #3
0
class Trainer():
    """ ALL Detection System 2019 Chatbot Training Class

    Trains the ALL Detection System 2019 Chatbot. 
    """
    def __init__(self):
        """ Initializes the Training class. """

        self.Helpers = Helpers()
        self.LogFile = self.Helpers.setLogFile(
            self.Helpers.confs["System"]["Logs"] + "Train/")

        self.intentMap = {}
        self.words = []
        self.classes = []
        self.dataCorpus = []

        self.Model = Model()
        self.Data = Data()

    def setupData(self):
        """ Prepares the data. """

        self.trainingData = self.Data.loadTrainingData()

        self.words, self.classes, self.dataCorpus, self.intentMap = self.Data.prepareData(
            self.trainingData)
        self.x, self.y = self.Data.finaliseData(self.classes, self.dataCorpus,
                                                self.words)

        self.Helpers.logMessage(self.LogFile, "TRAIN", "INFO",
                                "NLU Training Data Ready")

    def setupEntities(self):
        """ Prepares the entities. """

        if self.Helpers.confs["NLU"]["Entities"] == "Mitie":
            self.entityController = Entities()
            self.entityController.trainEntities(
                self.Helpers.confs["NLU"]["Mitie"]["ModelLocation"],
                self.trainingData)
            self.Helpers.logMessage(self.LogFile, "TRAIN", "OK",
                                    "NLU Trainer Entities Ready")

    def trainModel(self):
        """ Trains the model. """

        while True:
            self.Helpers.logMessage(self.LogFile, "TRAIN", "ACTION",
                                    "Ready To Begin Training ? (Yes/No)")
            userInput = input(">")

            if userInput == 'Yes': break
            if userInput == 'No': exit()

        self.setupData()
        self.setupEntities()

        humanStart, trainingStart = self.Helpers.timerStart()

        self.Model.trainDNN(self.x, self.y, self.words, self.classes,
                            self.intentMap)

        trainingEnd, trainingTime, humanEnd = self.Helpers.timerEnd(
            trainingStart)

        self.Helpers.logMessage(
            self.LogFile, "TRAIN", "OK", "NLU Model Trained At " + humanEnd +
            " In " + str(trainingEnd) + " Seconds")
コード例 #4
0
class Engine():
    """ Engine Class

	Core functions for the NLU Engine.
	"""
    def __init__(self, isAudio):
        """ Initializes the class. """

        self.Helpers = Helpers("Engine")

        self.ner = None
        self.user = {}

        #self.bluetoothCon()
        self.data()
        self.entities()
        #self.iotJumpWayCon()
        self.model()
        self.session()
        self.thresholds()

        if isAudio:
            self.speech()

        self.Helpers.logger.info("Engine class initialized.")

    def bluetoothCon(self):
        """ Initializes the Bluetooth connection. """

        self.Bluetooth = BluetoothConnect()
        self.Bluetooth.connect()

    def data(self):
        """ Initializes the data. """

        self.Data = Data()
        self.trainingData = self.Data.loadTrainingData()
        self.trainedData = self.Data.loadTrainedData()

        self.trainedWords = self.trainedData["words"]
        self.trainedClasses = self.trainedData["classes"]
        self.x = self.trainedData["x"]
        self.y = self.trainedData["y"]
        self.intentMap = self.trainedData["intentMap"][0]

    def doExtension(self, extension, entities, exEntities, extensionResponses):
        """ Executes an extension. """

        classParts = extension.split(".")
        classFolder = classParts[0]
        className = classParts[1]
        theEntities = None

        if exEntities != False:
            theEntities = entities

        module = __import__(classParts[0] + "." + classParts[1], globals(),
                            locals(), [className])
        extensionClass = getattr(module, className)()
        response = getattr(extensionClass, classParts[2])(extensionResponses,
                                                          theEntities)

        return response

    def entities(self):
        """ Initializes the entities. """

        self.entityController = Entities()
        self.ner = self.entityController.restoreNER()

    def entitiesCheck(self, entityHolder, theIntent, clearEntities):
        """ Checks entities. """

        if not len(entityHolder) and len(theIntent["entities"]):
            response, entities = self.entityController.replaceResponseEntities(
                random.choice(theIntent["fallbacks"]), entityHolder)
            extension, extensionResponses, exEntities = self.Extensions.setExtension(
                theIntent)
        elif clearEntities:
            entities = []
            response = random.choice(theIntent["responses"])
            extension, extensionResponses, exEntities = self.Extensions.setExtension(
                theIntent)
        else:
            response, entities = self.entityController.replaceResponseEntities(
                random.choice(theIntent["responses"]), entityHolder)
            extension, extensionResponses, exEntities = self.Extensions.setExtension(
                theIntent)

        return response, entities, extension, extensionResponses, exEntities

    def fallbackCheck(self, fallback, theIntent, entityHolder):
        """ Checks if fallback. """

        if fallback and fallback in theIntent and len(theIntent["fallbacks"]):
            response, entities = self.entityController.replaceResponseEntities(
                random.choice(theIntent["fallbacks"]), entityHolder)
            extension, extensionResponses, exEntities = None, [], None
        else:
            response, entities = self.entityController.replaceResponseEntities(
                random.choice(theIntent["responses"]), entityHolder)
            extension, extensionResponses, exEntities = self.Extensions.setExtension(
                theIntent)

        return response, entities, extension, extensionResponses, exEntities

    def model(self):
        """ Initializes the model. """

        self.Model = Model()
        self.Context = Context()
        self.Extensions = Extensions()

        self.tmodel = self.Model.buildDNN(self.x, self.y)

    def session(self):
        """ Initializes a NLU sesiion.

		Initiates empty guest user session, GeniSys will ask the user
		verify their GeniSys user by speaking or typing if it does
		not know who it is speaking to.
		"""

        self.userID = 0
        if not self.userID in self.user:
            self.user[self.userID] = {}
            self.user[self.userID]["history"] = {}

    def respond(self, status, sentence, intent, confidence, response, cIn,
                cOut, cCurrent, extension, entities):
        """ Forms the response. """

        return {
            "Response":
            status,
            "ResponseData": [{
                "Received":
                sentence,
                "Intent":
                intent,
                "Confidence":
                confidence,
                "Response":
                response,
                "Context": [{
                    "In": cIn,
                    "Out": cOut,
                    "Current": cCurrent
                }],
                "Extension":
                extension,
                "Entities":
                entities
            }]
        }

    def speech(self):
        """ Initializes the TTS feature. """

        self.TTS = TTS()

    def thresholds(self):
        """ Sets thresholds

		Sets the threshold for the NLU engine, this can be changed
		using arguments to commandline programs or paramters for
		API calls.
		"""

        self.threshold = self.Helpers.confs["NLU"]["Threshold"]
        self.entityThrshld = self.Helpers.confs["NLU"]["Mitie"]["Threshold"]
コード例 #5
0
class Chatbot():
    """ ALL Detection System 2019 Chatbot Class

    The ALL Detection System 2019 Chatbot. 
    """
    def __init__(self):
        """ Initializes the Chatbot class. """

        self.isTraining = False
        self.ner = None

        self.Helpers = Helpers()

        self.user = {}

        self.LogFile = self.Helpers.setLogFile(
            self.Helpers.confs["System"]["Logs"] + "NLU/")
        self.ChatLogFile = self.Helpers.setLogFile(
            self.Helpers.confs["System"]["Logs"] + "Chat/")

    def initiateSession(self):
        """ Initializes a Chatbot sesiion. 
        
        Initiates empty guest user session, GeniSys will ask the user 
        verify their GeniSys user by speaking or typing if it does
        not know who it is speaking to. 
        """

        self.userID = 0
        if not self.userID in self.user:
            self.user[self.userID] = {}
            self.user[self.userID]["history"] = {}

    def initNLU(self):
        """ Initializes a Chatbot sesiion. 
        
        Initiates the NLU setting up the data, NLU / entities models 
        and required modules such as context and extensions.
        """

        self.Data = Data()
        self.trainingData = self.Data.loadTrainingData()
        self.trainedData = self.Data.loadTrainedData()

        self.Model = Model()
        self.Context = Context()
        self.Extensions = Extensions()

        self.restoreData()
        self.restoreNER()
        self.restoreNLU()

        self.initiateSession()
        self.setThresholds()

    def commandsCallback(self, topic, payload):
        """ iotJumpWay callback function. 
        
        The callback function that is triggerend in the event of a 
        command communication from the iotJumpWay.
        """

        self.Helpers.logMessage(
            self.LogFile, "iotJumpWay", "INFO",
            "Recieved iotJumpWay Command Data : " + str(payload))

        commandData = json.loads(payload.decode("utf-8"))

    def restoreData(self):
        """ Restores the training data. 
        
        Sets the local trained data using data retrieved above
        """

        self.trainedWords = self.trainedData["words"]
        self.trainedClasses = self.trainedData["classes"]
        self.x = self.trainedData["x"]
        self.y = self.trainedData["y"]
        self.intentMap = self.trainedData["intentMap"][0]

    def loadEntityController(self):
        """ Initiates the entity extractor class """

        self.entityController = Entities()

    def restoreNER(self):
        """ Loads entity controller and restores the NER model """

        self.loadEntityController()
        self.ner = self.entityController.restoreNER()

    def restoreNLU(self):
        """ Restores the NLU model """

        self.tmodel = self.Model.buildDNN(self.x, self.y)

    def setThresholds(self):
        """ Sets thresholds
        
        Sets the threshold for the NLU engine, this can be changed
        using arguments to commandline programs or paramters for 
        API calls.
        """

        self.threshold = self.Helpers.confs["NLU"]["Threshold"]
        self.entityThrshld = self.Helpers.confs["NLU"]["Mitie"]["Threshold"]

    def communicate(self, sentence):
        """ Responds to the user
        
        First checks to ensure that the program is not training, 
        then parses any entities that may be in the intent, then 
        checks context and extensions before providing a response.
        """

        if self.isTraining == False:

            parsed, fallback, entityHolder, parsedSentence = self.entityController.parseEntities(
                sentence, self.ner, self.trainingData)

            classification = self.Model.predict(self.tmodel, parsedSentence,
                                                self.trainedWords,
                                                self.trainedClasses)

            if len(classification) > 0:

                clearEntities = False
                theIntent = self.trainingData["intents"][self.intentMap[
                    classification[0][0]]]

                if len(entityHolder) and not len(theIntent["entities"]):
                    clearEntities = True

                if (self.Context.checkSessionContext(self.user[self.userID],
                                                     theIntent)):

                    if self.Context.checkClearContext(theIntent, 0):
                        self.user[self.userID]["context"] = ""

                    contextIn, contextOut, contextCurrent = self.Context.setContexts(
                        theIntent, self.user[self.userID])

                    if not len(entityHolder) and len(theIntent["entities"]):
                        response, entities = self.entityController.replaceResponseEntities(
                            random.choice(theIntent["fallbacks"]),
                            entityHolder)
                        extension, extensionResponses, exEntities = self.Extensions.setExtension(
                            theIntent)
                    elif clearEntities:
                        entityHolder = []
                        response = random.choice(theIntent["responses"])
                        extension, extensionResponses, exEntities = self.Extensions.setExtension(
                            theIntent)
                    else:
                        response, entities = self.entityController.replaceResponseEntities(
                            random.choice(theIntent["responses"]),
                            entityHolder)
                        extension, extensionResponses, exEntities = self.Extensions.setExtension(
                            theIntent)

                    if extension != None:
                        classParts = extension.split(".")
                        classFolder = classParts[0]
                        className = classParts[1]
                        theEntities = None

                        if exEntities != False:
                            theEntities = entities

                        module = __import__(
                            classParts[0] + "." + classParts[1], globals(),
                            locals(), [className])
                        extensionClass = getattr(module, className)()
                        response = getattr(extensionClass,
                                           classParts[2])(extensionResponses,
                                                          theEntities)

                    return {
                        "Response":
                        "OK",
                        "ResponseData": [{
                            "Received":
                            sentence,
                            "Intent":
                            classification[0][0],
                            "Confidence":
                            str(classification[0][1]),
                            "Response":
                            response,
                            "Context": [{
                                "In": contextIn,
                                "Out": contextOut,
                                "Current": contextCurrent
                            }],
                            "Extension":
                            extension,
                            "Entities":
                            entityHolder
                        }]
                    }

                else:

                    self.user[self.userID]["context"] = ""
                    contextIn, contextOut, contextCurrent = self.Context.setContexts(
                        theIntent, self.user[self.userID])

                    if fallback and fallback in theIntent and len(
                            theIntent["fallbacks"]):
                        response, entities = self.entityController.replaceResponseEntities(
                            random.choice(theIntent["fallbacks"]),
                            entityHolder)
                        extension, extensionResponses = None, []
                    else:
                        response, entities = self.entityController.replaceResponseEntities(
                            random.choice(theIntent["responses"]),
                            entityHolder)
                        extension, extensionResponses, exEntities = self.Extensions.setExtension(
                            theIntent)

                    if extension != None:
                        classParts = extension.split(".")
                        classFolder = classParts[0]
                        className = classParts[1]
                        theEntities = None

                        if exEntities != False:
                            theEntities = entities

                        module = __import__(
                            classParts[0] + "." + classParts[1], globals(),
                            locals(), [className])
                        extensionClass = getattr(module, className)()
                        response = getattr(extensionClass,
                                           classParts[2])(extensionResponses,
                                                          theEntities)

                    else:
                        response = self.entityController.replaceResponseEntities(
                            random.choice(theIntent["responses"]),
                            entityHolder)
                        if (type(response) == tuple):
                            response = response[0]

                    return {
                        "Response":
                        "OK",
                        "ResponseData": [{
                            "Received":
                            sentence,
                            "Intent":
                            classification[0][0],
                            "Confidence":
                            str(classification[0][1]),
                            "Response":
                            response,
                            "Context": [{
                                "In": contextIn,
                                "Out": contextOut,
                                "Current": contextCurrent
                            }],
                            "Extension":
                            extension,
                            "Entities":
                            entityHolder
                        }]
                    }

            else:

                contextCurrent = self.Context.getCurrentContext(
                    self.user[self.userID])

                return {
                    "Response":
                    "FAILED",
                    "ResponseData": [{
                        "Received":
                        sentence,
                        "Intent":
                        "UNKNOWN",
                        "Confidence":
                        "NA",
                        "Responses": [],
                        "Response":
                        random.choice(
                            self.Helpers.confs["NLU"]["defaultResponses"]),
                        "Context": [{
                            "In": "NA",
                            "Out": "NA",
                            "Current": contextCurrent
                        }],
                        "Extension":
                        "NA",
                        "Entities":
                        entityHolder
                    }]
                }
        else:

            return {
                "Response":
                "FAILED",
                "ResponseData": [{
                    "Status": "Training",
                    "Message": "NLU Engine is currently training"
                }]
            }