コード例 #1
0
def main():

    number_of_data = 400
    # Create las object and calculate corresponding values
    filename = 'tiny'
    partition = 70
    las_obj = ProcessLas(filename, partition)

    pfm = PCPDS_Manager()
    dir_name = pfm.generate_collection(filename, partition)
    print('Dir:' + str(dir_name))

    las_obj.input_las(dir_name)
    datafile = open("bdripson70partitions.txt", "a")

    #import functions
    n_results = 4  # menu.get_n_result_input()

    for n in range(number_of_data):

        # Generates random idx value for pcpds object
        random_idx = str(las_obj.random_grid())

        random_pcpds = None
        first = True
        # TODO: Validate the idx from random_grid is valid, else run random_grid again.
        # Generate & validate a random_pcpds to use.
        while (not pfm.get_path_manager().validate_file(
                os.path.join(dir_name, random_idx + ".json")) or first):
            random_idx = str(las_obj.random_grid())
            print("Attempting RANDOM ID:", random_idx)
            first = False

        # Grabs the pcpds object that was generated
        random_pcpds = pfm.get_pcpds(random_idx)
        # Calculate bottleneck distance, print n_result matches
        closest_matches = bottleneck_distances.search_distances(
            n_results, random_pcpds.get_persistance_diagram(), dir_name)

        datafile.write(str(random_idx))
        datafile.write(":")

        # Calculate bottleneck distance, print n_result matches
        for idx in closest_matches:
            datafile.write(str(idx))
            print(idx)
            datafile.write(",")
        datafile.write('\n')

        menu.progress(n, number_of_data,
                      ("Processing random grid: " + str(random_idx) + "..."))

    print("Job done.")
コード例 #2
0
def generate_files():

    print("What LAS file would you like to use?")
    filename = menu.get_filename_input()

    print("How manny partitions would you like?")
    partition = menu.get_int_input()

    las_obj = ProcessLas(filename, partition)

    dir_name = file_manager.make_folder(filename)

    pfm = PCPDS_Manager()
    dir_name = pfm.generate_collection(filename, partition)

    # TODO: Add multithreading option to input_las?
    las_obj.input_las(dir_name)
    print("File generation complete.")
コード例 #3
0
def process_run():
     
    pcpds_manager = PCPDS_Manager()
    
    # List the directories
    
    # Ask for the directory
    print("Enter the Collection of pcpds objects you wish to generate persistance diagramsfor.")
    collection = menu.get_input("Directory: ")
    
    pcpds_manager.get_path_manager().set_cur_dir(collection)
    
    valid = pcpds_manager.get_collection_dir()
    
    while(not valid):
        print("Invalid collection name:", pcpds_manager.get_path_manager().get_cur_dir() ,"try again.", valid)
        collection = menu.get_input("Directory: ")
        pcpds_manager.get_path_manager().set_cur_dir(collection)
        valid = pcpds_manager.get_collection_dir()
    
    # Verify the directory
    
    print("Valid Directory Confirmed:", pcpds_manager.get_path_manager().get_full_cur_dir())
    
    # Loop for choosing filtration method:
    print("Choose a filtration method: [0] Rips, [1] Upper Star, [2] Lower Star.")
    choice = menu.get_int_input()
    while not (choice < 3 and choice > -1):
        print("Please enter a valid number between 0-2.")
        choice = menu.get_int_input()
    
    # Selects the filter function to be used.
    filter = None
    if choice is 0:
        filter = Filtration.get_rips_diagram
    elif choice is 1:
        filter = Filtration.get_upper_star
    elif choice is 2:
        filter = Filtration.get_lower_star
        
    # Start timer
    # start_time = time.time()
    
    print("Would you like to use multi-processing to attempt to speed things up? [0] No. [1] Yes.")
    print("Please do note that using multiprocessing only speeds up the generation of persistance diagrams with larger point clouds.")
    multiproc = menu.get_int_input()
    
    if(multiproc):
        # with concurrent.futures.ProcessPoolExecutor as executor:
        for file in os.listdir(pcpds_manager.get_path_manager().get_full_cur_dir_var(collection)):
            # Sets up the process
            # generate_persistence_diagram(pcpds_manager, file, filter)
            process = multiprocessing.Process(target=generate_persistence_diagram, args=(pcpds_manager, file, filter))
            process.start()
            process.join()
            process.terminate()
            
    else:
        print("NOT MULTIPROCESSING:")
        # Process the point clouds into persistance diagrams without using multiprocessing
        files = os.listdir(pcpds_manager.get_path_manager().get_full_cur_dir_var(collection))
        iter = 0
        for file in files:
            menu.progress(iter, len(files), ("Generating persistance diagram for:"+str(file)))
            generate_persistence_diagram(pcpds_manager, file, filter)
            iter += 1
        menu.progress(1, 1, "Generating persistance diagrams completed.")
コード例 #4
0
def main():

    pfm = PCPDS_Manager()
    number_of_data = 200 #Max 256 when saving to excel
    num_partitions_to_slide = 3

    # Will need the filtration method for new point cloud filtering later.
    filt_method = None
    leading_zeros = 0
    dir_name = ""

    pfm.get_path_manager().set_cur_dir("")

    valid = False


    print("Please enter a collection that has already been filtered:")
    # If not a valid directory, ask again saying it is invalid
    while(not valid):
        if not pfm.get_collection_dir():
            print("Invalid collection name:", pfm.get_path_manager().get_cur_dir(), "try again.")
        dir_name = menu.get_input("Directory: ")
        pfm.get_path_manager().set_cur_dir(dir_name)
        valid = pfm.get_collection_dir()

        # Checks the first pcpds object in this directory for if it has a persistance diagram
        pcpds_temp = None
        for file in os.listdir(pfm.get_path_manager().get_full_cur_dir_var(dir_name)):
            file_path = os.path.join(pfm.get_path_manager().get_full_cur_dir(), file)
            pcpds_temp = file_manager.load(file_path)
            break
        if pcpds_temp is not None:
            if pcpds_temp.get_persistance_diagram() is not None:
                print("Valid Directory Chosen:", valid)
                # Stores the filtration method used to form the persistence diagram for later use.
                filt_method = pcpds_temp.get_filtration_used()
                # Stores the leading zeros here based on the directory name.
                break
            else:
                valid = False
                print("\nNo persistance diagram present for files @ collection:", pfm.get_path_manager().get_full_cur_dir() + ".\n")
                print("Please Either enter a directory that has been filtrated for persistance diagrams or run 'generate_persistance_diagrams.py' on the collection.")
        else:
            print("Problem loading pcpds file, it loaded as None.")

    wb = Workbook()
    excel_sheet = wb.add_sheet('Sheet 2')

    # Grabs the leading_zeros variable using X from a random idx's cell_ID.
    tmp_cellID = pfm.get_random_pcpds().get_cellID()
    leading_zeros = int((len(str(tmp_cellID))-1)/3)

    print("LEADING ZEROS:", leading_zeros)
    for n in range(number_of_data):

        pcpds = None

        valid_idx = False
        while valid_idx == False:

            # Grabs a random pcpds from the currently selected directory.
            pcpds = pfm.get_random_pcpds()
            (X, Y, Z) = pcpds.get_xyz()

            print("XYZ of random pcpds: Z", X, "Y:", Y, "Z:", Z)
            # Do this to check for if we are on a lower bound to avoid errors from negative values.
            if X < 1 or Y < 1:
                print("Invalid XYZ")
                continue

            slide_left_X = pfm.gen_idx(X-1, Y, leading_zeros)
            slide_right_X = pfm.gen_idx(X+1, Y, leading_zeros)
            slide_up_Y = pfm.gen_idx(X, Y+1, leading_zeros)
            slide_down_Y = pfm.gen_idx(X, Y-1, leading_zeros)
            slide_left_down = pfm.gen_idx(X-1, Y-1, leading_zeros)
            slide_right_down = pfm.gen_idx(X+1, Y-1, leading_zeros)
            slide_right_up = pfm.gen_idx(X+1, Y+1, leading_zeros)
            slide_left_up = pfm.gen_idx(X-1, Y+1, leading_zeros)

            if pfm.get_path_manager().validate_file(os.path.join(pfm.get_collection_dir(), str(slide_left_X) +".json")) == True:
                if pfm.get_path_manager().validate_file(os.path.join(pfm.get_collection_dir(), str(slide_right_X) +".json")) == True:
                    if pfm.get_path_manager().validate_file(os.path.join(pfm.get_collection_dir(), str(slide_up_Y) +".json")) == True:
                        if pfm.get_path_manager().validate_file(os.path.join(pfm.get_collection_dir(), str(slide_down_Y) +".json")) == True:
                            valid_idx = True

        # Get the random pcpds's details
        idx = pcpds.get_cellID()
        print("Random IDX chosen:", str(idx))
        (dimX, dimY, dimZ) = pcpds.get_dimensions()
        bounds = pcpds.get_bounds()

        # Grab persistance diagram of random idx.
        test_pd = pcpds.get_persistance_diagram()

        # TODO: Change how Validation of these slid idx values is done?
        slide_left_X = pfm.get_pcpds(slide_left_X)
        slide_right_X = pfm.get_pcpds(slide_right_X)
        slide_up_Y = pfm.get_pcpds(slide_up_Y)
        slide_down_Y = pfm.get_pcpds(slide_down_Y)

        num_slides = 10
        num_directions = 4
        #results = [0]*(num_slides * num_partitions_to_slide)
        excel_sheet.write(0, n, str(idx))

        # Applies transform to point cloud and generates a persistence diagram to compare for bottleneck distances.
        print("num_slides * num_partitions_to_slide:",num_slides * num_partitions_to_slide)
        for overlay in range(1, num_slides * num_partitions_to_slide):

            # Left
            bounds_left_X = menu.transform(bounds, dimX, -1, True, overlay, num_slides)
            left_X_pcpds = menu.within_point_cloud(pcpds, slide_left_X, bounds_left_X)

            # Right
            bounds_right_X = menu.transform(bounds, dimX, 1, True, overlay, num_slides)
            right_X_pcpds = menu.within_point_cloud(pcpds, slide_right_X, bounds_right_X)

            # Up
            bounds_up_Y = menu.transform(bounds, dimY, 1, False, overlay, num_slides)
            up_Y_pcpds = menu.within_point_cloud(pcpds, slide_up_Y, bounds_up_Y)

            # Down
            bounds_down_Y = menu.transform(bounds, dimY, -1, False, overlay, num_slides)
            down_Y_pcpds = menu.within_point_cloud(pcpds, slide_down_Y, bounds_down_Y)

            overlay_avg = -1
            num_dir = 0
            sum = 0

            try:
                left_X_pcpds = filt_method(left_X_pcpds)
                left_X_pd = left_X_pcpds.get_persistance_diagram()
                sum = sum + bottleneck_distances.get_distances(left_X_pd, test_pd)
                num_dir = num_dir + 1
            except:
                print("ERROR LEFT")
                right_bn = 0

            try:
                right_X_pcpds = filt_method(right_X_pcpds)
                right_X_pd = right_X_pcpds.get_persistance_diagram()
                sum = sum + bottleneck_distances.get_distances(right_X_pd, test_pd)
                num_dir = num_dir + 1
            except:
                print("ERROR RIGHT")
                right_bn = 0

            try:
                up_Y_pcpds = filt_method(up_Y_pcpds)
                up_Y_pd = up_Y_pcpds.get_persistance_diagram()
                sum = sum + bottleneck_distances.get_distances(up_Y_pd, test_pd)
                num_dir = num_dir + 1
            except:
                print("ERROR UP")
                up_bn = 0

            try:
                down_Y_pcpds = filt_method(down_Y_pcpds)
                down_Y_pd = down_Y_pcpds.get_persistance_diagram()
                sum = sum + bottleneck_distances.get_distances(down_Y_pd, test_pd)
                num_dir = num_dir + 1
            except:
                print("ERROR DOWN")
                down_bn = 0


            if (num_dir != 0):
                overlay_avg = sum / num_dir
            else:
                overlay_avg = -1
            excel_sheet.write(overlay, n, str(overlay_avg))

        menu.progress(n, number_of_data, ("Processing random grid: "+str(idx)+"..."))
    menu.progress(1, 1, ("Processing complete."))
    # Write results .xls file
    wb.save(dir_name + '.xls')
    print("Job done.")
コード例 #5
0
            except:
                # Dosen't exist?
                print("pcpds file for cell_ID:", specification, "dosen't exist.")
        except:
            
            if specification.lower() == "r":
                pcpds = pm.get_random_pcpds()
                valid_pcpds_found = True
                break
                print(specification)
            else:
                print("Invalid pcpds format entered.")
        specification = menu.get_input("PCPDS Num:")
    return pcpds

pcpds_manager = PCPDS_Manager()
    
# List the directories

# Ask for the directory
print("Enter the Collection of pcpds objects you wish to generate persistance diagramsfor.")
collection = menu.get_input("Directory: ")

pcpds_manager.get_path_manager().set_cur_dir(collection)

path = pcpds_manager.get_collection_dir()

while(not path):
    print("Invalid collection name:", pcpds_manager.get_path_manager().get_cur_dir() ,"try again.", path)
    collection = menu.get_input("Directory: ")
    pcpds_manager.get_path_manager().set_cur_dir(collection)
コード例 #6
0
def compute_bottle_neck_dist():
    # This computes the bottleneck distance using a pre-processed/filtrated collection

    pcpds_manager = PCPDS_Manager()
    print("Collections:")
    collections_string = ""
    collections = os.listdir(
        pcpds_manager.get_path_manager().get_collections_path())
    collections.sort()
    for directory in collections:
        collections_string += directory + " \t"
    print(collections_string)
    print("Please enter a collection that has already been filtrated:")

    # Loop here for valid directory
    collection = menu.get_input("Directory: ")

    pcpds_manager.get_path_manager().set_cur_dir(collection)

    valid = pcpds_manager.get_collection_dir()
    while (True):

        # If not a valid directory, ask again saying it is invalid
        while (not valid):
            if not pcpds_manager.get_collection_dir():
                print("Invalid collection name:",
                      pcpds_manager.get_path_manager().get_cur_dir(),
                      "try again.")
            collection = menu.get_input("Directory: ")
            pcpds_manager.get_path_manager().set_cur_dir(collection)
            valid = pcpds_manager.get_collection_dir()

        # Checks the first pcpds object in this directory for if it has a persistance diagram
        pcpds_temp = None
        for file in os.listdir(
                pcpds_manager.get_path_manager().get_full_cur_dir_var(
                    collection)):
            file_path = os.path.join(
                pcpds_manager.get_path_manager().get_full_cur_dir(), file)
            pcpds_temp = file_manager.load(file_path)
            break
        if pcpds_temp is not None:
            if pcpds_temp.get_persistance_diagram() is not None:
                print("Valid Directory Chosen:", valid)
                break
            else:
                valid = False
                print(
                    "\nNo persistance diagram present for files @ collection:",
                    pcpds_manager.get_path_manager().get_full_cur_dir() +
                    ".\n")
                print(
                    "Please Either enter a directory that has been filtrated for persistance diagrams or run 'generate_persistance_diagrams.py' on the collection."
                )
        else:
            print("Problem loading pcpds file, it loaded as None.")

    print("Ready to process, how manny n_nearest results would you like?")

    # TODO: Validate that n_results is a valid number for the current dataset.
    n_results = menu.get_int_input()

    # Choose a modifier and apply it here
    pcpds = choose_pcpds(pcpds_manager)
    print("PCPDS Selected:", pcpds.get_cellID())
    pcpds, mods = modify_pcpds(pcpds)

    # Calculated closest n matching bottleneck distances.
    closest_matches = bottleneck_distances.search_distances(
        n_results, pcpds.get_persistance_diagram(), valid)

    wb = Workbook()
    excel_sheet = wb.add_sheet('Bottle_Neck_Distance_Comparison')

    excel_sheet.write(0, 0, "Closest_" + str(n_results) + "_BD_Matches")
    excel_sheet.write(0, 1, "Bottle_Neck_Distance")

    excel_sheet.write(0, 2, "Cell_ID_Compared_Against:")
    excel_sheet.write(1, 2, pcpds.get_cellID())

    if len(mods) > 0:
        excel_sheet.write(0, 3, str(pcpds.get_cellID()) + " Modifications")
        iter = 1
        for mod in mods:
            excel_sheet.write(iter, 3, mod)
            iter += 1

    iter = 1
    for idx in closest_matches:

        # Write results .xls file
        excel_sheet.write(iter, 0, idx[0][:-5])
        excel_sheet.write(iter, 1, idx[1])
        iter = iter + 1

    # Adds a tag to make the file name more unique to avoid mindlessly over writing data
    file_end_tag = str(pcpds.get_cellID())
    if len(mods) > 0:
        file_end_tag += ":" + mods[0]

    wb.save(
        os.path.join("results",
                     pcpds_manager.get_path_manager().get_cur_dir()) + "-" +
        file_end_tag + ":" + pcpds.get_filtration_used_name() + '.xls')
    print("Results saved as Excel file.")
コード例 #7
0
# This file tests if all the pcpds objects in a dorectory have the same filtration method saved.

import os
from Classes.PCPDS_manager import PCPDS_Manager
import Classes.file_manager as file_manager
from Classes.menu import menu

pcpds_manager = PCPDS_Manager()
print("Collections:")
collections_string = ""
collections = os.listdir(
    pcpds_manager.get_path_manager().get_collections_path())
collections.sort()
for directory in collections:
    collections_string += directory + " \t"
print(collections_string)
print("Please enter a collection that has already been filtrated:")

# Loop here for valid directory
collection = menu.get_input("Directory: ")

pcpds_manager.get_path_manager().set_cur_dir(collection)

valid = pcpds_manager.get_collection_dir()
while (True):

    # If not a valid directory, ask again saying it is invalid
    while (not valid):
        if not pcpds_manager.get_collection_dir():
            print("Invalid collection name:",
                  pcpds_manager.get_path_manager().get_cur_dir(), "try again.")
コード例 #8
0
from Classes.PCPDS_manager import PCPDS_Manager
from Classes.menu import menu
import Classes.file_manager as fm
import os.path
import xlrd
from xlwt import Workbook

pm = PCPDS_Manager()
pm.get_path_manager().set_cols_dir("results")

print("Enter the result file directory name:")
collection = menu.get_input("Directory: ")

pm.get_path_manager().set_cur_dir(collection)

valid = pm.get_collection_dir()

while (not valid):
    print("Invalid results dir name:",
          pm.get_path_manager().get_cur_dir(), "try again.")
    collection = menu.get_input("Directory: ")
    pm.get_path_manager().set_cur_dir(collection)
    valid = pm.get_collection_dir()

# Load in all files from directory
file_names = fm.find_files(pm.get_collection_dir(), ".xls")
print("DIR:", pm.get_collection_dir(), "\n")

print("Ready to process, how manny n_nearest results would you like?")
# Takes in the n_nearest you want to include from those files
n_nearest = menu.get_int_input() + 1
コード例 #9
0
def process_run():

    pcpds_manager = PCPDS_Manager()

    # List the directories

    # Ask for the directory
    print(
        "Enter the Collection of pcpds objects you wish to generate persistance diagramsfor."
    )
    collection = menu.get_input("Directory: ")

    pcpds_manager.get_path_manager().set_cur_dir(collection)

    valid = pcpds_manager.get_collection_dir()

    while (not valid):
        print("Invalid collection name:",
              pcpds_manager.get_path_manager().get_cur_dir(), "try again.",
              valid)
        collection = menu.get_input("Directory: ")
        pcpds_manager.get_path_manager().set_cur_dir(collection)
        valid = pcpds_manager.get_collection_dir()

    # Verify the directory

    print("Valid Directory Confirmed:",
          pcpds_manager.get_path_manager().get_full_cur_dir())

    # Loop for choosing filtration method:
    print(
        "Choose a filtration method: [0] Rips, [1] Upper Star, [2] Lower Star."
    )
    choice = menu.get_int_input()
    while not (choice < 3 and choice > -1):
        print("Please enter a valid number between 0-2.")
        choice = menu.get_int_input()

    # Selects the filter function to be used.
    filter = None
    if choice is 0:
        filter = Filtration.get_rips_diagram
    elif choice is 1:
        filter = Filtration.get_upper_star
    elif choice is 2:
        filter = Filtration.get_lower_star

    # Start timer
    start_time = time.time()

    print(
        "Would you like to use multi-processing to attempt to speed things up? [0] No. [1] Yes."
    )
    multiproc = menu.get_int_input()

    if (multiproc):
        for file in os.listdir(
                pcpds_manager.get_path_manager().get_full_cur_dir_var(
                    collection)):
            # Sets up the process
            process = multiprocessing.Process(
                target=generate_persistence_diagram,
                args=(pcpds_manager, file, filter))
            process.start()
            process.join()
            process.terminate()
    else:
        # Process the point clouds into persistance diagrams without using multiprocessing
        for file in os.listdir(
                pcpds_manager.get_path_manager().get_full_cur_dir_var(
                    collection)):
            generate_persistence_diagram(pcpds_manager, file, filter)

    print("Finished filtrating persistance diagrams for files in: ",
          str(time.time() - start_time))
コード例 #10
0
def pool_run():

    pcpds_manager = PCPDS_Manager()

    # List the directories

    # Ask for the directory
    print(
        "Enter the Collection of pcpds objects you wish to generate persistance diagramsfor."
    )
    collection = menu.get_input("Directory: ")

    pcpds_manager.get_path_manager().set_cur_dir(collection)

    valid = pcpds_manager.get_collection_dir()
    while (not valid):
        print("Invalid collection name:",
              pcpds_manager.get_path_manager().get_cur_dir(), "try again.",
              valid)
        collection = menu.get_input("Directory: ")
        pcpds_manager.get_path_manager().set_cur_dir(collection)
        valid = pcpds_manager.get_collection_dir()

    # Verify the directory

    print("Valid Directory Confirmed:",
          pcpds_manager.get_path_manager().get_full_cur_dir())

    # Loop for choosing filtration method:
    print(
        "Choose a filtration method: [0] Rips, [1] Upper Star, [2] Lower Star."
    )
    choice = menu.get_int_input()
    while not (choice < 3 and choice > -1):
        print("Please enter a valid number between 0-2.")
        choice = menu.get_int_input()

    # Selects the filter function to be used.
    filter = None
    if choice is 0:
        filter = Filtration.get_rips_diagram
    elif choice is 1:
        filter = Filtration.get_upper_star
    elif choice is 2:
        filter = Filtration.get_lower_star

    # Start timer
    start_time = time.time()

    # TODO: Add filter for '.json' objects as it will have problems on macs otherwise?

    # TODO: set to the number of items we think the cpu should handle at a time based on total cpu count.
    pool_size = 10
    process_pool = []
    pool = multiprocessing.Pool()
    for file in os.listdir(
            pcpds_manager.get_path_manager().get_full_cur_dir_var(collection)):
        # Build a process pool
        process_pool.append(file)
        if (len(process_pool) >= pool_size):
            # send the process pool to a cpu
            # TODO: Need a better way of passing in arguements to make using this method justifiable when I can't gaurentee it's time complexity will be beter.
            pool.map(generate_persistence_diagram, process_pool,
                     args(pcpds_manager, file, filter))
            # Empty pool for next set.
            process_pool.clear()
            pool.close()

    # finish processing the items left in process pool

    print("Finished filtrating persistance diagrams for files in: ",
          str(time.time() - start_time))
コード例 #11
0
from Classes.PCPDS_manager import PCPDS_Manager
from Classes.menu import menu
import Classes.file_manager as file_manager
import Classes.modifiers as modifiers
import os.path
import Classes.bottleneck_dist as bd
from xlwt import Workbook

pcpds_manager = PCPDS_Manager()
print("Collections:")
collections_string = ""
collections =  os.listdir(pcpds_manager.get_path_manager().get_collections_path())
collections.sort()
for directory in collections:
    collections_string += directory + " \t"
print(collections_string)
print("Please enter a collection that has already been filtrated:")

# Loop here for valid directory
collection = menu.get_input("Directory: ")
    
pcpds_manager.get_path_manager().set_cur_dir(collection)
    
cap = 10
valid = pcpds_manager.get_collection_dir()
while(True):
    
    # If not a valid directory, ask again saying it is invalid
    while(not valid):
        if not pcpds_manager.get_collection_dir():
            print("Invalid collection name:", pcpds_manager.get_path_manager().get_cur_dir() ,"try again.")
コード例 #12
0
def main():

    pfm = PCPDS_Manager()
    number_of_data = 400

    print("Please enter a collection that has already been filtered:")
    #TODO: list collections
    # Loop here for valid directory
    collection = menu.get_input("Directory: ")

    pfm.get_path_manager().set_cur_dir(collection)

    valid = pfm.get_collection_dir()

    # If not a valid directory, ask again saying it is invalid
    while (not valid):
        if not pfm.get_collection_dir():
            print("Invalid collection name:",
                  pfm.get_path_manager().get_cur_dir(), "try again.")
        collection = menu.get_input("Directory: ")
        pfm.get_path_manager().set_cur_dir(collection)
        valid = pfm.get_collection_dir()

        # Checks the first pcpds object in this directory for if it has a persistance diagram
        pcpds_temp = None
        for file in os.listdir(
                pfm.get_path_manager().get_full_cur_dir_var(collection)):
            file_path = os.path.join(pfm.get_path_manager().get_full_cur_dir(),
                                     file)
            pcpds_temp = file_manager.load(file_path)
            break
        if pcpds_temp is not None:
            if pcpds_temp.get_persistance_diagram() is not None:
                print("Valid Directory Chosen:", valid)
                break
            else:
                valid = False
                print(
                    "\nNo persistance diagram present for files @ collection:",
                    pfm.get_path_manager().get_full_cur_dir() + ".\n")
                print(
                    "Please Either enter a directory that has been filtrated for persistance diagrams or run 'generate_persistance_diagrams.py' on the collection."
                )
        else:
            print("Problem loading pcpds file, it loaded as None.")

    cur_dir = pfm.get_path_manager().get_full_cur_dir()

    wb = Workbook()
    excel_sheet = wb.add_sheet('Sheet 1')

    for n in range(number_of_data):

        # Find random valid index with valid slide pcpds
        test_idx = file_manager.get_random_file(cur_dir, '.json')[:-5]

        valid_idx = False
        while valid_idx == False:

            # Find valid center pcpds
            test_idx = file_manager.get_random_file(cur_dir, '.json')[:-5]
            while pfm.get_path_manager().validate_file(
                    os.path.join(cur_dir, test_idx + ".json")) == False:
                test_idx = file_manager.get_random_file(cur_dir, '.json')[:-5]

            test_pcpds = pfm.get_random_pcpds(test_idx)
            (X, Y, Z) = test_pcpds.get_xyz(str(test_idx))

            # Find valid slide directional pcpds objects
            slide_left_X = las_obj.find_index(X - 1, Y)
            slide_right_X = las_obj.find_index(X + 1, Y)
            slide_up_Y = las_obj.find_index(X, Y + 1)
            slide_down_Y = las_obj.find_index(X, Y - 1)

            if pfm.get_path_manager().validate_file(
                    os.path.join(dir_name,
                                 str(slide_left_X) + ".json")) == True:
                if pfm.get_path_manager().validate_file(
                        os.path.join(dir_name,
                                     str(slide_right_X) + ".json")) == True:
                    if pfm.get_path_manager().validate_file(
                            os.path.join(dir_name,
                                         str(slide_up_Y) + ".json")) == True:
                        if pfm.get_path_manager().validate_file(
                                os.path.join(dir_name,
                                             str(slide_down_Y) +
                                             ".json")) == True:
                            valid_idx = True
                            print("VALID RANDOM ID: ", test_idx)

        # Get the random pcpds's details
        print('COORDINATES: ' + 'X:' + str(X) + ' Y:' + str(Y) + ' Z:' +
              str(Z))
        (dimX, dimY, dimZ) = test_pcpds.get_dimensions()
        bounds = test_pcpds.get_bounds(str(test_idx))
        test_pcpds = filtration.get_rips_diagram(test_pcpds)
        test_pd = test_pcpds.get_persistance_diagram()

        results = [0] * 11
        num_dir = 4

        slide_left_X = pfm.get_pcpds(slide_left_X)
        slide_right_X = pfm.get_pcpds(slide_right_X)
        slide_up_Y = pfm.get_pcpds(slide_up_Y)
        slide_down_Y = pfm.get_pcpds(slide_down_Y)

        # Slide frame 10% across each direction
        for overlay in range(1, 10):

            # Left
            bounds_left_X = menu.transform(bounds, dimX, -1, True, overlay)
            left_X_pcpds = menu.within_point_cloud(test_pcpds, slide_left_X,
                                                   bounds_left_X)
            left_X_pcpds = filtration.get_rips_diagram(left_X_pcpds)
            left_X_pd = left_X_pcpds.get_persistance_diagram()

            # Right
            bounds_right_X = menu.transform(bounds, dimX, 1, True, overlay)
            right_X_pcpds = menu.within_point_cloud(test_pcpds, slide_right_X,
                                                    bounds_right_X)
            right_X_pcpds = filtration.get_rips_diagram(right_X_pcpds)
            right_X_pd = right_X_pcpds.get_persistance_diagram()

            # Up
            bounds_up_Y = menu.transform(bounds, dimY, 1, False, overlay)
            up_Y_pcpds = menu.within_point_cloud(test_pcpds, slide_up_Y,
                                                 bounds_up_Y)
            up_Y_pcpds = filtration.get_rips_diagram(up_Y_pcpds)
            up_Y_pd = up_Y_pcpds.get_persistance_diagram()

            # Down
            bounds_down_Y = menu.transform(bounds, dimY, -1, False, overlay)
            down_Y_pcpds = menu.within_point_cloud(test_pcpds, slide_down_Y,
                                                   bounds_down_Y)
            down_Y_pcpds = filtration.get_rips_diagram(down_Y_pcpds)
            down_Y_pd = down_Y_pcpds.get_persistance_diagram()

            # Find average bottleneck at each overlay percentage
            results[overlay - 1] = bottleneck_distances.get_distances(
                left_X_pd, test_pd)
            results[overlay -
                    1] = results[overlay] + bottleneck_distances.get_distances(
                        right_X_pd, test_pd)
            results[overlay -
                    1] = results[overlay] + bottleneck_distances.get_distances(
                        up_Y_pd, test_pd)
            results[overlay - 1] = (results[overlay] +
                                    bottleneck_distances.get_distances(
                                        down_Y_pd, test_pd)) / num_dir

        # Write results .xls file
        num = 1
        excel_sheet.write(n, 0, str(test_idx))
        for overlay_avg in results:
            excel_sheet.write(n, num, str(overlay_avg))
            num = num + 1
        wb.save(dir_name + '.xls')

        menu.progress(n, number_of_data,
                      ("Processing random grid: " + str(test_idx) + "..."))

    print("Job done.")