def classify_button_multiple(self): address = self.address_display.get() if len(address) < 1: messagebox.showinfo("Error", "Please choose a dataset") else: importObject = ImportAndClean() simple_predictor = KNNClassifier() # Check User Input file_name = "sample_input.txt" self.output.delete(0.0, END) result = simple_predictor.buffer_for_prediction( importObject.clean_for_prediction(address, True)) self.save_results(result) self.output.insert(0.0, result)
def classify_button_single(self): entered_text = self.textentry.get() # print(entered_text) if len(entered_text) < 1: messagebox.showinfo("Error", "Please enter a headline") else: self.output.delete(0.0, END) importObject = ImportAndClean() simple_predictor = KNNClassifier() # Check User Input # test_string = "Justin Bieber arrested after concert" result = simple_predictor.buffer_for_prediction( importObject.clean_for_prediction(entered_text, False)) self.save_results(result) self.output.insert(0.0, result)
def train_button(self): entered_text = self.textentry.get() # print(entered_text) if len(entered_text) == 0: messagebox.showinfo("Error", "Please enter a relevant value") elif float(entered_text) > 0.31: messagebox.showinfo("Error", "Enter a value smaller than 0.3") else: self.output.delete(0.0, END) if len(self.address_display.get()) < 1: messagebox.showinfo("Error", "Please choose a dataset") else: importObject = ImportAndClean(self.address_display.get()) text_column = importObject.get_text_column() numeric_column = importObject.get_label_column() trainer = NBModelBuilder(text_column, numeric_column, float(entered_text)) self.output.insert(END, trainer.train())
from Classifier_Code.back_import_clean import ImportAndClean from Classifier_Code.back_train_get_accuracy_multinaivebayes import NBModelBuilder from Classifier_Code.back_classify_multinaivebayes import NBClassifier from Classifier_Code.back_train_get_accuracy_knn import KNNModelBuilder from Classifier_Code.back_classify_knn import KNNClassifier if __name__ == '__main__': # Check User Input # test_string = "Justin Bieber arrested after concert" test_string = "All the Times Ryan Reynolds And Blake Lively Roasted Each Other" # file_name = "sample_input.txt" # KNN # KNN Train importObject = ImportAndClean() text_column = importObject.get_text_column() numeric_column = importObject.get_label_column() # KNN Training and Testing knn_object_train = KNNModelBuilder(text_column, numeric_column, 0.1) print(knn_object_train.train()) # KNN Classify # knn_object_classify = KNNClassifier() # print(knn_object_classify.buffer_for_prediction( # importObject.clean_for_prediction(test_string, False))) # print(knn_object_classify.buffer_for_prediction( # importObject.clean_for_prediction(file_name, True)))