def gen_line(line,province,touch_time,spliter = u'/**********/'): words = line.split('|') if len(words) != 9: return None result = (u'%s'+spliter)*21+u'\n' compname = words[0] compkeyname = words[0] province = province TPYE = Classify.predict(words[3]) postdate = words[4] level = Classify.get_risk_score(words[3]) channel = u'全国企业信用公示系统('+province+u')' rank = '' TPYE_2 = '' postdate_2 = '' level_2='' channel_2='' rank_2='' updatetime = unicode(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(touch_time))) subcomp = words[0] createtime = updatetime privince_field = '' city_field = '' id = '' reg_no = words[1] comp_no = '' result = result % (compname,compkeyname,province,TPYE,postdate,level,channel,rank,TPYE_2,postdate_2,level_2,channel_2,rank_2,updatetime,subcomp,createtime,privince_field,city_field,id,reg_no,comp_no) result = result.encode('gbk','ignore') return result
def gen_line(line, province, touch_time, spliter=u'/**********/'): words = line.split('|') if len(words) != 9: return None result = (u'%s' + spliter) * 21 + u'\n' compname = words[0] compkeyname = words[0] province = province TPYE = Classify.predict(words[3]) postdate = words[4] level = Classify.get_risk_score(words[3]) channel = u'全国企业信用公示系统(' + province + u')' rank = '' TPYE_2 = '' postdate_2 = '' level_2 = '' channel_2 = '' rank_2 = '' updatetime = unicode( time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(touch_time))) subcomp = words[0] createtime = updatetime privince_field = '' city_field = '' id = '' reg_no = words[1] comp_no = '' result = result % (compname, compkeyname, province, TPYE, postdate, level, channel, rank, TPYE_2, postdate_2, level_2, channel_2, rank_2, updatetime, subcomp, createtime, privince_field, city_field, id, reg_no, comp_no) result = result.encode('gbk', 'ignore') return result
def Extract_lisenceplate(model, license_plate_path): for num, image_inp in enumerate( glob.glob(conf['Indian_cars']) + glob.glob(conf['Foreign_cars'])): print(image_inp) image_to_classify = cv2.imread(image_inp) # cv2.imshow('image',image_to_classify) # cv2.waitKey(0) # cv2.destroyAllWindows() image_resized = Tools.resize(image_to_classify, height=500) pred_dict = Classify().classify_new_instance(image_resized, model) # print (pred_dict) # print (model) probs = [] for image_fname, prob in pred_dict.items(): #range(0,len(pred_dict)): probs.append(prob[1]) # print (image_fname) probs = np.array(probs) ind = np.where(probs == np.max(probs))[0] print(ind) for filename in np.array(list(pred_dict.keys()))[ind]: copyfile( conf['Regions_of_Intrest'] + filename, license_plate_path + filename.split(".")[0] + "_" + str(num) + ".jpg")
def __init__(self): self._camera = Camera(0) self._model = Model(config.USER_EMAIL, config.USER_PASSWORD, config.EQUIPMENT_NAME) self._classify = Classify(self._model) self._align = OpencvAlign() self._timer = Timer() self._fail_count = 0 self._success = True self._success_task = None self._record_task = None self.start = time.time()
class Main(): url = None tweets = None fetch = None parse = None classifier = Classify("trainSet.json", "dictionary.json", "./liveTrain.json", "./pastTrain.json", "./liveTrainDic.json", "./pastTrainDic.json") fetch = Fetch() print(classifier.classifyOne(fetch.tweets[0], 1, 1)) # Load parsed tweets def loadTweets(self): json_data = open("parsedTweets.json") data = json.load(json_data) return data # Function to check tweet exists def getTweet(self, tweet_id): for line in self.tweets: if int(line['id']) == tweet_id: return line # Save a tweet in json file def save(self): with open('./parsedTweets.json', 'w+') as outfile: outfile.write(json.dumps(self.tweets, indent=4))
def Extract_lisenceplates(model, extracted_license_plate_path): for num, image_inp in enumerate(glob.glob(conf['Images_to_classify']) ): print (image_inp) image_to_classify = cv2.imread(image_inp) # cv2.imshow('image',image_to_classify) # cv2.waitKey(0) # cv2.destroyAllWindows() image_resized = Tools.resize(image_to_classify, height=500) pred_dict = Classify().classify_new_instance(image_resized,model) # print (pred_dict) # print (model) probs = [] coords=[] for image_fname,s_and_c in pred_dict.items():#range(0,len(pred_dict)): prob=s_and_c[1] x=s_and_c[2] y=s_and_c[3] w=s_and_c[4] h=s_and_c[5] probs.append(prob) coords.append([x,y,w,h]) # print (image_fname) probs = np.array(probs) coords = np.array(coords) ind = np.where(probs == np.max(probs))[0] filenames=pred_dict.keys() for i in ind: filename=filenames[i] copyfile(conf['Regions_of_Intrest']+filename, extracted_license_plate_path+filename.split(".")[0]+"_"+str(num)+".jpg") coord=coords[i] x=coord[0] y=coord[1] w=coord[2] h=coord[3] cv2.rectangle(image_resized,(x,y),(x+w,y+h),(0,255,0),2) cv2.namedWindow("Show") cv2.moveWindow("Show", 10, 50) cv2.imshow("Show",image_resized) cv2.waitKey() cv2.destroyAllWindows()
def main(): problem = Training() accuracy_training_for_each_sample_size = [] accuracy_testing_for_each_sample_size = [] for i in range(0, 10): num_examples = i * 1 training_set = ParseTools.get_training_set(None, num_examples + 2) testing_set = ParseTools.get_testing_set(None) problem.create_decision_tree(training_set) accuracy_training_set = Classify.get_accuracy(problem.decision_tree, training_set) accuracy_testing_set = Classify.get_accuracy(problem.decision_tree, testing_set) accuracy_training_for_each_sample_size.append(accuracy_training_set) accuracy_testing_for_each_sample_size.append(accuracy_testing_set) training_set_accuracy_file = open("./results/training_set_accuracy.txt", "w") print "training set accuracy" for j in range(0, len(accuracy_training_for_each_sample_size)): print "num examples: " + str(j) + " acc: " + str( accuracy_training_for_each_sample_size[j]) training_set_accuracy_file.write( str(accuracy_training_for_each_sample_size[j]) + '\n') training_set_accuracy_file.close() print "\n\n" testing_set_accuracy_file = open("./results/testing_set_accuracy.txt", "w") print "testing set accuracy" for j in range(0, len(accuracy_testing_for_each_sample_size)): print "num examples: " + str(j) + " acc: " + str( accuracy_testing_for_each_sample_size[j]) testing_set_accuracy_file.write( str(accuracy_testing_for_each_sample_size[j]) + '\n') testing_set_accuracy_file.close()
def Extract_lisenceplate(): for image_inp in glob.glob(conf['Indian_cars']): print(image_inp) image_to_classify = cv2.imread(image_inp) # cv2.imshow('image',image_to_classify) # cv2.waitKey(0) # cv2.destroyAllWindows() image_resized = Tools.resize(image_to_classify, height=500) pred_dict = Classify().classify_new_instance(image_resized, model) print(pred) break
def test_models(): conf = Configuration.get_datamodel_storage_path() for files in glob.glob( conf['All_Models']): # Test Using all the models saved in the disk classifier = open(files).read() classifier = cPickle.loads(classifier) image_to_classify = cv2.imread(image_to_classify_path) image_resized = imutils.resize(image_to_classify, height=500) pred = Classify().classify_new_instance(image_resized, classifier) print classifier for i in range(0, len(pred)): if pred[i][0] == 1: print pred[i]
def classify(self): """the function starts the classify process by inboking it's init method""" Classify(os.path.join(self.__path, 'test.csv'), self.__rang, self.__numeric, self.__statistics, self.__k, self.__classes, self.__abs_n, self) self.view.Build_Button.configure(state="active")
output_one_hot = to_one_hot(output) # Huperparameters for tuning hidden_neuron_list = [6] epochs = 100 runs = 30 lr_rate = 0.001 lmbd = 0 AUC = [] accuracy = [] # Defining the parameters run for grid search acc_test = np.zeros((runs, epochs)) acc_train = np.zeros((runs, epochs)) clf = Classify(hidden_activation="leaky_ReLU", output_activation="softmax") for i in tqdm(range(runs)): X_train, X_test, Y_train, Y_test = train_test_split(input_data, output_one_hot, test_size=0.2) Scaler = preprocessing.StandardScaler() X_train_scaled = Scaler.fit_transform(X_train) X_test_scaled = Scaler.transform(X_test) nn = NeuralNetwork(X_train_scaled, Y_train, problem=clf, n_hidden_neurons_list=hidden_neuron_list, n_output_neurons=2, epochs=epochs, batch_size=100,
from Classify import Classify import time if __name__ == "__main__": start = time.clock() classify = Classify() trainingPath = "C:\\Users\\ace\\Desktop\\newData\\training" testPath = "C:\\Users\\ace\\Desktop\\newData\\testing" featureExtraType = "surf" result = classify.algoSVM(trainingPath, testPath, featureExtraType) end = time.clock() print "run time: %f s" % (end - start) print result print "Taux global:%f" % (result.trace() / result.sum())
class CheckFaceService(): def __init__(self): self._camera = Camera(0) self._model = Model(config.USER_EMAIL, config.USER_PASSWORD, config.EQUIPMENT_NAME) self._classify = Classify(self._model) self._align = OpencvAlign() self._timer = Timer() self._fail_count = 0 self._success = True self._success_task = None self._record_task = None self.start = time.time() def start_check(self): if self._model.is_empty: return self._timer.start_timing() self._fail_count = 0 self._success = False while self._fail_count < 3 and not self._success: frame = self._camera.CatchImage() start = time.time() if (is_blurr(frame)): continue #if (self._timer.get_time_count() >= 5): # return if (self._align.cut(frame)): classify_result = self._classify.classify_image( self._align.image) self._classify_result_handler(classify_result, frame) self._timer.start_timing() self._align.clear() print(time.time() - start) @property def model(self): return self._model @property def camera(self): return self._camera @property def check_success_task(self): return self._success_task @property def record_task(self): return self._record_task @check_success_task.setter def check_success_task(self, task): self._success_task = task @record_task.setter def record_task(self, task): self._record_task = task def _classify_result_handler(self, classify_result, frame): if (classify_result[0] == 'unknown'): print(str(classify_result[0]) + ":" + str(classify_result[1])) print('open lock fail') self._fail_count += 1 if (self._fail_count >= 3 and self.record_task != None): self.record_task("fail", "face", classify_result[0], frame) else: self.start = time.time() print(str(classify_result[0]) + ":" + str(classify_result[1])) print('open lock') bulbController.setGreenBulbOpen() bulbController.setYellowBulbOpen() if (self.record_task != None): self.record_task("success", "face", classify_result[0], frame) self._success = True self._success_task()