model.value_iteration(0.1) if time % 500 == 1 and time > split_step: if split_strategy == "always": model.reset_decision_tree() model.chain_split() elif split_strategy == "start_chain": model.chain_split() else: model.value_iteration(0.1) if time > training_steps: total_reward += reward if PRINT and time > training_steps: print scenario.get_incoming_load(), scenario.get_current_capacity(), \ 100 * meas[PC_READ_LOAD], 100 * meas[IO_PER_SEC] total_splits = 0 good_splits = 0 marg_splits = 0 splits = model.get_splits_per_parameter() for par, s in splits.iteritems(): total_splits += s if par in scenario.get_relevant_params(): good_splits += s if par in scenario.get_marginal_params(): marg_splits += s if not PRINT: print "Reward:", total_reward, "Total splits:", total_splits, "Good splits:", good_splits, "Marginal splits:", marg_splits
if time % 500 == 1 and time > split_step: if split_strategy == "always": model.reset_decision_tree() model.chain_split() elif split_strategy == "start_chain": model.chain_split() else: model.value_iteration(0.1) if time > training_steps: total_reward += reward if PRINT and time > training_steps: print(scenario.get_incoming_load(), scenario.get_current_capacity(), 100 * meas[PC_READ_LOAD], 100 * meas[IO_PER_SEC]) total_splits = 0 good_splits = 0 marg_splits = 0 splits = model.get_splits_per_parameter() for par, s in splits.items(): total_splits += s if par in scenario.get_relevant_params(): good_splits += s if par in scenario.get_marginal_params(): marg_splits += s if not PRINT: print("Reward:", total_reward, "Total splits:", total_splits,