def main(argv): del argv # unused. config_name = '/data/junyoung/workspace/Mol_DQN/models/multi_logp_qed_model/config_2' all_cid = '/data/junyoung/workspace/Mol_DQN/Config/all_cid' with open(config_name) as f: hparams = json.load(f) with open(all_cid) as f: all_mols = json.load(f) # init_mol = ["CNC(=O)/C(C#N)=C(/[O-])C1=NN(c2cc(C)ccc2C)C(=O)CC1"] environment = Multi_LogP_QED_Molecule(hparams=hparams, molecules=all_mols) dqn = deep_q_networks.DeepQNetwork( hparams=hparams, q_fn=functools.partial( deep_q_networks.Q_fn_neuralnet_model, hparams=hparams)) Trainer =trainer.Trainer( hparams=hparams, environment=environment, model=dqn) Trainer.run_training() config.write_hparams(hparams, os.path.join(hparams['save_param']['model_path'], 'config.json'))
def main(argv): del argv # unused. config_name = '/home/junyoung/workspace/Mol_DQN/models/logp_model/config' all_cid = '/home/junyoung/workspace/Mol_DQN/Config/all_cid' with open(config_name) as f: hparams = json.load(f) # with open(all_cid) as f: # all_mols = json.load(f) environment = LogP_Molecule(hparams=hparams, molecules=None) dqn = deep_q_networks.DeepQNetwork( hparams=hparams, q_fn=functools.partial( deep_q_networks.Q_fn_neuralnet_model, hparams=hparams)) Trainer =trainer.Trainer( hparams=hparams, environment=environment, model=dqn) Trainer.run_training() config.write_hparams(hparams, os.path.join(hparams['save_param']['model_dir'], 'config.json'))