コード例 #1
0
ファイル: traj_logging.py プロジェクト: schrodinger/SMAC3
    def _add_in_alljson_format(self, train_perf: float, incumbent_id: int,
                               incumbent: Configuration, budget: float,
                               ta_time_used: float,
                               wallclock_time: float) -> None:
        """Adds entries to AClib2-like (but with configs as json) trajectory file

        Parameters
        ----------
        train_perf: float
            Estimated performance on training (sub)set
        incumbent_id: int
            Id of incumbent
        incumbent: Configuration()
            Current incumbent configuration
        budget: float
            budget (cutoff) used in intensifier to limit TA (default: 0)
        ta_time_used: float
            CPU time used by the target algorithm
        wallclock_time: float
            Wallclock time used so far
        """
        traj_entry = {"cpu_time": ta_time_used,
                      "wallclock_time": wallclock_time,
                      "evaluations": self.stats.ta_runs,
                      "cost": train_perf,
                      "incumbent": incumbent.get_dictionary(),
                      "budget": budget,
                      "origin": incumbent.origin,
                      }

        with open(self.alljson_traj_fn, "a") as fp:
            json.dump(traj_entry, fp)
            fp.write("\n")
コード例 #2
0
    def hyperparameter_values(self, value: Configuration):
        """Encode hyperparameters from object to base64"""
        if value is None:
            d = {}
        else:
            d = value.get_dictionary()

        self.hyperparameter_values_64 = object_to_base_64(d)
コード例 #3
0
class Config(object):
    """ This class is an extension of the ConfigurationSpace-Configuration,
    introducing module-members scenario, id, repetition etc. """
    def __init__(self, scen, ID, repetition=0, updates=""):
        """ This function creates a configuration with default parameters, which will
        (at the end of the function) be overwritten with the values in the updates-
        dictionary. """
        if isinstance(updates, str):
            updates = self.dict_from_file(scen, ID)
        elif not isinstance(updates, dict):
            raise ValueError("updates to Config must be of type str (for"
                             "filepath) or dict.")

        with open("dlas/dlas.pcs", 'r') as f:
            configspace = pcs.read(f.readlines())
        self.default_config = configspace.get_default_configuration()
        config_dict = self.default_config.get_dictionary()
        config_dict.update(updates)
        self.config = Configuration(configspace, config_dict)
        self.scen = scen
        self.ID = ID
        self.rep = repetition
        self.use_validation = True
        self.result_path = "results/{}/{}/{}/".format(self.scen, self.ID,
                                                      self.rep)

    def __getitem__(self, attr):
        return self.config[attr]

    def get_dictionary(self):
        return self.config.get_dictionary()

    def dict_from_file(self, s, ID):
        with open("experiments/{}.txt".format(ID), 'r') as f:
            content = f.readlines()
            content = [
                tuple(line.strip("\n").split("=")) for line in content
                if line != "\n"
            ]
            content = [(name.strip(), value.strip())
                       for name, value in content]
            content = dict(content)
            for c in content:
                try:
                    content[c] = float(content[c])
                    if content[c].is_integer():
                        content[c] = int(content[c])
                except ValueError:
                    pass
            return content
コード例 #4
0
    def _overwrite_configuration(self, config: Configuration,
                                 overwrite_args: list):
        '''
            overwrites a given configuration with some new settings

            Arguments
            ---------
            config: Configuration
                initial configuration to be adapted
            overwrite_args: list
                new parameter settings as a list of strings

            Returns
            -------
            Configuration
        '''
        def pairwise(iterable):
            a, b = tee(iterable)
            next(b, None)
            return zip(a, b)

        dict_conf = config.get_dictionary()
        for param, value in pairwise(overwrite_args):
            try:
                ok = self.cs.get_hyperparameter(param)
            except KeyError:
                ok = None
            if ok is not None:
                if type(self.cs.get_hyperparameter(
                        param)) is UniformIntegerHyperparameter:
                    dict_conf[param] = int(value)
                elif type(self.cs.get_hyperparameter(
                        param)) is UniformFloatHyperparameter:
                    dict_conf[param] = float(value)
                elif value == "True":
                    dict_conf[param] = True
                elif value == "False":
                    dict_conf[param] = False
                else:
                    dict_conf[param] = value
            else:
                self.logger.warn("Unknown given parameter: %s %s" %
                                 (param, value))
        config = Configuration(self.cs,
                               values=dict_conf,
                               allow_inactive_with_values=True)

        return config
コード例 #5
0
ファイル: smac_php2dhp.py プロジェクト: tqichun/auto-pipeline
 def convert(self, php: Configuration):
     dict_ = php.get_dictionary()
     ret = {}
     for k, v in dict_.items():
         if isinstance(v, str):
             v = _decode(v)
         key_path = k.split(":")
         if key_path[-1] == "__choice__":
             key_path = key_path[:-1]
             if v is not None:
                 key_path += [v]
                 v = {}
         if "None" in key_path:
             continue
         self.set_kv(ret, key_path, v)  # self.split_key(k)
     return ret
コード例 #6
0
ファイル: autofolio.py プロジェクト: wannabeGuru/AutoFolio
    def _overwrite_configuration(self, config: Configuration, overwrite_args: list):
        '''
            overwrites a given configuration with some new settings

            Arguments
            ---------
            config: Configuration
                initial configuration to be adapted
            overwrite_args: list
                new parameter settings as a list of strings

            Returns
            -------
            Configuration
        '''

        def pairwise(iterable):
            a, b = tee(iterable)
            next(b, None)
            return zip(a, b)

        dict_conf = config.get_dictionary()
        for param, value in pairwise(overwrite_args):
            if dict_conf.get(param):
                if type(self.cs.get_hyperparameter(param)) is UniformIntegerHyperparameter:
                    dict_conf[param] = int(value)
                elif type(self.cs.get_hyperparameter(param)) is UniformFloatHyperparameter:
                    dict_conf[param] = float(value)
                elif value == "True":
                    dict_conf[param] = True
                elif value == "False":
                    dict_conf[param] = False
                else:
                    dict_conf[param] = value
            else:
                self.logger.warn(
                    "Unknown given parameter: %s %s" % (param, value))
        config = Configuration(self.cs, values=dict_conf)

        return config
コード例 #7
0
    def set_hyperparameters(
            self,
            configuration: Configuration,
            init_params: Optional[Dict[str,
                                       Any]] = None) -> 'autoPyTorchChoice':
        """
        Applies a configuration to the given component.
        This method translate a hierarchical configuration key,
        to an actual parameter of the autoPyTorch component.

        Args:
            configuration (Configuration): which configuration to apply to
                the chosen component
            init_params (Optional[Dict[str, any]]): Optional arguments to
                initialize the chosen component

        Returns:
            self: returns an instance of self
        """
        new_params = {}

        params = configuration.get_dictionary()
        choice = params['__choice__']
        del params['__choice__']

        for param, value in params.items():
            param = param.replace(choice + ':', '')
            new_params[param] = value

        if init_params is not None:
            for param, value in init_params.items():
                param = param.replace(choice + ':', '')
                new_params[param] = value

        new_params['random_state'] = self.random_state

        self.new_params = new_params
        self.choice = self.get_components()[choice](**new_params)

        return self
コード例 #8
0
ファイル: ImageAugmenter.py プロジェクト: automl/Auto-PyTorch
    def set_hyperparameters(self,
                            configuration: Configuration,
                            init_params: Optional[Dict[str, Any]] = None
                            ) -> 'ImageAugmenter':
        """
        Applies a configuration to the given component.
        This method translate a hierarchical configuration key,
        to an actual parameter of the autoPyTorch component.

        Args:
            configuration (Configuration): which configuration to apply to
                the chosen component
            init_params (Optional[Dict[str, any]]): Optional arguments to
                initialize the chosen component

        Returns:
            self: returns an instance of self
        """
        available_augmenters = get_components()
        for name, augmenter in available_augmenters.items():
            new_params = {}

            params = configuration.get_dictionary()

            for param, value in params.items():
                if name in param:
                    param = param.replace(name, '').replace(':', '')
                    new_params[param] = value

            if init_params is not None:
                for param, value in init_params.items():
                    if name in param:
                        param = param.replace(name, '').replace(':', '')
                        new_params[param] = value

            new_params['random_state'] = self.random_state

            self.available_augmenters[name] = augmenter(**new_params)

        return self
コード例 #9
0
    def set_hyperparameters(
            self,
            configuration: Configuration,
            init_params: Optional[Dict[str, Any]] = None) -> BaseEstimator:
        """
        Applies a configuration to the given component.
        This method translate a hierarchical configuration key,
        to an actual parameter of the autoPyTorch component.

        Args:
            configuration (Configuration): which configuration to apply to
                the chosen component
            init_params (Optional[Dict[str, any]]): Optional arguments to
                initialize the chosen component

        Returns:
            An instance of self
        """
        params = configuration.get_dictionary()

        for param, value in params.items():
            if not hasattr(self, param):
                raise ValueError('Cannot set hyperparameter %s for %s because '
                                 'the hyperparameter does not exist.' %
                                 (param, str(self)))
            setattr(self, param, value)

        if init_params is not None:
            for param, value in init_params.items():
                if not hasattr(self, param):
                    raise ValueError('Cannot set init param %s for %s because '
                                     'the init param does not exist.' %
                                     (param, str(self)))
                setattr(self, param, value)

        return self