コード例 #1
0
def Matching(cf):

    if cf.compute.useCUDA and cf.compute.gpuID is not None:
        ca.SetCUDADevice(cf.compute.gpuID)

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(MatchingConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST


    I0 = common.LoadITKImage(cf.study.I0, mType)
    I1 = common.LoadITKImage(cf.study.I1, mType)
    #ca.DivC_I(I0,255.0)
    #ca.DivC_I(I1,255.0)
    grid = I0.grid()

    ca.ThreadMemoryManager.init(grid, mType, 1)
    
    #common.DebugHere()
    # TODO: need to work on these
    t = [x*1./cf.optim.nTimeSteps for x in range(cf.optim.nTimeSteps+1)]
    checkpointinds = range(1,len(t))
    checkpointstates =  [(ca.Field3D(grid,mType),ca.Field3D(grid,mType)) for idx in checkpointinds]

    p = MatchingVariables(I0,I1, cf.vectormomentum.sigma, t,checkpointinds, checkpointstates, cf.vectormomentum.diffOpParams[0], cf.vectormomentum.diffOpParams[1], cf.vectormomentum.diffOpParams[2], cf.optim.Niter, cf.optim.stepSize, cf.optim.maxPert, cf.optim.nTimeSteps, integMethod = cf.optim.integMethod, optMethod=cf.optim.method, nInv=cf.optim.NIterForInverse,plotEvery=cf.io.plotEvery, plotSlice = cf.io.plotSlice, quiverEvery = cf.io.quiverEvery, outputPrefix = cf.io.outputPrefix)

    RunMatching(p)

    # write output
    if cf.io.outputPrefix is not None: 
        # reset all variables by shooting once, may have been overwritten
        CAvmCommon.IntegrateGeodesic(p.m0,p.t,p.diffOp,\
                          p.m, p.g, p.ginv,\
                          p.scratchV1, p.scratchV2,p. scratchV3,\
                          p.checkpointstates, p.checkpointinds,\
                          Ninv=p.nInv, integMethod = p.integMethod)
        common.SaveITKField(p.m0, cf.io.outputPrefix+"m0.mhd")
        common.SaveITKField(p.ginv, cf.io.outputPrefix+"phiinv.mhd")
        common.SaveITKField(p.g, cf.io.outputPrefix+"phi.mhd")
def BuildAtlas(cf):
    """Worker for running Atlas construction on a subset of individuals.
    Runs Atlas on this subset sequentially. The variations retuned are
    summed up to get update for all individuals
    """

    localRank = Compute.GetMPIInfo()['local_rank']
    rank = Compute.GetMPIInfo()['rank']

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # just one reporter process on each node
    isReporter = rank == 0
    cf.study.numSubjects = len(cf.study.subjectImages)

    if isReporter:
        # Output loaded config
        if cf.io.outputPrefix is not None:
            cfstr = Config.ConfigToYAML(AtlasConfigSpec, cf)
            with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
                f.write(cfstr)
    #common.DebugHere()

    # if MPI check if processes are greater than number of subjects. it is okay if there are more subjects than processes

    if cf.compute.useMPI and (cf.study.numSubjects < cf.compute.numProcesses):
        raise Exception("Please don't use more processes " +
                        "than total number of individuals")

    # subdivide data, create subsets for this thread to work on
    nodeSubjectIds = cf.study.subjectIds[rank::cf.compute.numProcesses]
    nodeImages = cf.study.subjectImages[rank::cf.compute.numProcesses]
    nodeWeights = cf.study.subjectWeights[rank::cf.compute.numProcesses]

    numLocalSubjects = len(nodeImages)
    print 'rank:', rank, ', localRank:', localRank, ', nodeImages:', nodeImages, ', nodeWeights:', nodeWeights

    # mem type is determined by whether or not we're using CUDA
    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST

    # load data in memory
    # load intercepts
    J_array = [
        common.LoadITKImage(f, mType) if isinstance(f, str) else f
        for f in nodeImages
    ]

    # get imGrid from data
    imGrid = J_array[0].grid()

    # atlas image
    atlas = ca.Image3D(imGrid, mType)

    # allocate memory to store only the initial momenta for each individual in this thread
    m_array = [ca.Field3D(imGrid, mType) for i in range(numLocalSubjects)]

    # allocate only one copy of scratch memory to be reused for each local individual in this thread in loop
    p = WarpVariables(imGrid,
                      mType,
                      cf.vectormomentum.diffOpParams[0],
                      cf.vectormomentum.diffOpParams[1],
                      cf.vectormomentum.diffOpParams[2],
                      cf.optim.NIterForInverse,
                      cf.vectormomentum.sigma,
                      cf.optim.stepSize,
                      integMethod=cf.optim.integMethod)

    # memory to accumulate numerators and denominators for atlas from
    # local individuals which will be summed across MPI threads
    sumSplatI = ca.Image3D(imGrid, mType)
    sumJac = ca.Image3D(imGrid, mType)

    # start up the memory manager for scratch variables
    ca.ThreadMemoryManager.init(imGrid, mType, 0)

    # need some host memory in np array format for MPI reductions
    if cf.compute.useMPI:
        mpiImageBuff = None if mType == ca.MEM_HOST else ca.Image3D(
            imGrid, ca.MEM_HOST)

    t = [
        x * 1. / (cf.optim.nTimeSteps) for x in range(cf.optim.nTimeSteps + 1)
    ]
    cpinds = range(1, len(t))
    msmtinds = [
        len(t) - 2
    ]  # since t=0 is not in cpinds, thats just identity deformation so not checkpointed
    cpstates = [(ca.Field3D(imGrid, mType), ca.Field3D(imGrid, mType))
                for idx in cpinds]
    gradAtMsmts = [ca.Image3D(imGrid, mType) for idx in msmtinds]

    EnergyHistory = []

    # TODO: better initializations
    # initialize atlas image with zeros.
    ca.SetMem(atlas, 0.0)
    # initialize momenta with zeros

    for m0_individual in m_array:
        ca.SetMem(m0_individual, 0.0)
    '''
    # initial template image
    ca.SetMem(groupState.I0, 0.0)
    tmp = ca.ManagedImage3D(imGrid, mType)

    for tdisc in tdiscGroup:
        if tdisc.J is not None:
            ca.Copy(tmp, tdisc.J)
            groupState.I0 += tmp
    del tmp
    if cf.compute.useMPI:
        Compute.Reduce(groupState.I0, mpiImageBuff)
    
    # divide by total num subjects
    groupState.I0 /= cf.study.numSubjects
    '''

    # preprocessinput

    # assign atlas reference to p.I0. This reference will not change.
    p.I0 = atlas

    # run the loop
    for it in range(cf.optim.Niter):
        # run one iteration of warp for each individual and update
        # their own initial momenta and also accumulate SplatI and Jac
        ca.SetMem(sumSplatI, 0.0)
        ca.SetMem(sumJac, 0.0)
        TotalVEnergy = np.array([0.0])
        TotalIEnergy = np.array([0.0])

        for itsub in range(numLocalSubjects):
            # initializations for this subject, this only assigns
            # reference to image variables
            p.m0 = m_array[itsub]
            Imsmts = [J_array[itsub]]

            # run warp iteration
            VEnergy, IEnergy = RunWarpIteration(nodeSubjectIds[itsub], cf, p,
                                                t, Imsmts, cpinds, cpstates,
                                                msmtinds, gradAtMsmts, it)

            # gather relevant results
            ca.Add_I(sumSplatI, p.sumSplatI)
            ca.Add_I(sumJac, p.sumJac)
            TotalVEnergy[0] += VEnergy
            TotalIEnergy[0] += IEnergy

        # if there are multiple nodes we'll need to sum across processes now
        if cf.compute.useMPI:
            # do an MPI sum
            Compute.Reduce(sumSplatI, mpiImageBuff)
            Compute.Reduce(sumJac, mpiImageBuff)

            # also sum up energies of other nodes
            mpi4py.MPI.COMM_WORLD.Allreduce(mpi4py.MPI.IN_PLACE,
                                            TotalVEnergy,
                                            op=mpi4py.MPI.SUM)
            mpi4py.MPI.COMM_WORLD.Allreduce(mpi4py.MPI.IN_PLACE,
                                            TotalIEnergy,
                                            op=mpi4py.MPI.SUM)

        EnergyHistory.append([TotalVEnergy[0], TotalIEnergy[0]])

        # now divide to get the new atlas image
        ca.Div(atlas, sumSplatI, sumJac)

        # keep track of energy in this iteration
        if isReporter and cf.io.plotEvery > 0 and ((
            (it + 1) % cf.io.plotEvery == 0) or (it == cf.optim.Niter - 1)):
            # plots
            AtlasPlots(cf, p, atlas, m_array, EnergyHistory)

        if isReporter:
            # print out energy
            (VEnergy, IEnergy) = EnergyHistory[-1]
            print "Iter", it, "of", cf.optim.Niter, ":", VEnergy + IEnergy, '(Total) = ', VEnergy, '(Vector) + ', IEnergy, '(Image)'

    # write output images and fields
    AtlasWriteOutput(cf, atlas, m_array, nodeSubjectIds, isReporter)
def MatchingImageMomenta(cf):
    """Runs matching for image momenta pair."""
    if cf.compute.useCUDA and cf.compute.gpuID is not None:
        ca.SetCUDADevice(cf.compute.gpuID)

    common.DebugHere()
    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(MatchingImageMomentaConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    # mem type is determined by whether or not we're using CUDA
    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST

    # load data in memory
    I0 = common.LoadITKImage(cf.study.I, mType)
    m0 = common.LoadITKField(cf.study.m, mType)
    J1 = common.LoadITKImage(cf.study.J, mType)
    n1 = common.LoadITKField(cf.study.n, mType)

    # get imGrid from data
    imGrid = I0.grid()

    # create time array with checkpointing info for this geodesic to be estimated
    (s, scratchInd,
     rCpinds) = CAvmHGM.HGMSetUpTimeArray(cf.optim.nTimeSteps, [1.0], 0.001)
    tDiscGeodesic = CAvmHGMCommon.HGMSetupTimeDiscretizationResidual(
        s, rCpinds, imGrid, mType)

    # create the state variable for geodesic that is going to hold all info
    p0 = ca.Field3D(imGrid, mType)
    geodesicState = CAvmHGMCommon.HGMResidualState(
        I0,
        p0,
        imGrid,
        mType,
        cf.vectormomentum.diffOpParams[0],
        cf.vectormomentum.diffOpParams[1],
        cf.vectormomentum.diffOpParams[2],
        s,
        cf.optim.NIterForInverse,
        1.0,
        cf.vectormomentum.sigmaM,
        cf.vectormomentum.sigmaI,
        cf.optim.stepSize,
        integMethod=cf.optim.integMethod)
    # initialize with zero
    ca.SetMem(geodesicState.p0, 0.0)
    # start up the memory manager for scratch variables
    ca.ThreadMemoryManager.init(imGrid, mType, 0)
    EnergyHistory = []
    # run the loop
    for it in range(cf.optim.Niter):
        # shoot the geodesic forward
        CAvmHGMCommon.HGMIntegrateGeodesic(geodesicState.p0, geodesicState.s,
                                           geodesicState.diffOp,
                                           geodesicState.p, geodesicState.rho,
                                           geodesicState.rhoinv, tDiscGeodesic,
                                           geodesicState.Ninv,
                                           geodesicState.integMethod)
        # integrate the geodesic backward
        CAvmHGMCommon.HGMIntegrateAdjointsResidual(geodesicState,
                                                   tDiscGeodesic, m0, J1, n1)

        # TODO: verify it should just be log map/simple image matching when sigmaM=\infty
        # gradient descent step for geodesic.p0
        CAvmHGMCommon.HGMTakeGradientStepResidual(geodesicState)

        # compute and print energy
        (VEnergy, IEnergy,
         MEnergy) = MatchingImageMomentaComputeEnergy(geodesicState, m0, J1,
                                                      n1)
        EnergyHistory.append(
            [VEnergy + IEnergy + MEnergy, VEnergy, IEnergy, MEnergy])
        print "Iter", it, "of", cf.optim.Niter, ":", VEnergy + IEnergy + MEnergy, '(Total) = ', VEnergy, '(Vector) + ', IEnergy, '(Image Match) + ', MEnergy, '(Momenta Match)'

        # plots
        if cf.io.plotEvery > 0 and (((it + 1) % cf.io.plotEvery == 0) or
                                    (it == cf.optim.Niter - 1)):
            MatchingImageMomentaPlots(cf,
                                      geodesicState,
                                      tDiscGeodesic,
                                      EnergyHistory,
                                      m0,
                                      J1,
                                      n1,
                                      writeOutput=True)

    # write output
    MatchingImageMomentaWriteOuput(cf, geodesicState)
def GeodesicShooting(cf):

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(GeodesicShootingConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    mType = ca.MEM_DEVICE if cf.useCUDA else ca.MEM_HOST
    #common.DebugHere()
    I0 = common.LoadITKImage(cf.study.I0, mType)
    m0 = common.LoadITKField(cf.study.m0, mType)
    grid = I0.grid()

    ca.ThreadMemoryManager.init(grid, mType, 1)
    # set up diffOp
    if mType == ca.MEM_HOST:
        diffOp = ca.FluidKernelFFTCPU()
    else:
        diffOp = ca.FluidKernelFFTGPU()
    diffOp.setAlpha(cf.diffOpParams[0])
    diffOp.setBeta(cf.diffOpParams[1])
    diffOp.setGamma(cf.diffOpParams[2])
    diffOp.setGrid(grid)

    g = ca.Field3D(grid, mType)
    ginv = ca.Field3D(grid, mType)
    mt = ca.Field3D(grid, mType)
    It = ca.Image3D(grid, mType)
    t = [
        x * 1. / cf.integration.nTimeSteps
        for x in range(cf.integration.nTimeSteps + 1)
    ]
    checkpointinds = range(1, len(t))
    checkpointstates = [(ca.Field3D(grid, mType), ca.Field3D(grid, mType))
                        for idx in checkpointinds]

    scratchV1 = ca.Field3D(grid, mType)
    scratchV2 = ca.Field3D(grid, mType)
    scratchV3 = ca.Field3D(grid, mType)
    # scale momenta to shoot
    cf.study.scaleMomenta = float(cf.study.scaleMomenta)
    if abs(cf.study.scaleMomenta) > 0.000000:
        ca.MulC_I(m0, float(cf.study.scaleMomenta))
        CAvmCommon.IntegrateGeodesic(m0,t,diffOp, mt, g, ginv,\
                                     scratchV1,scratchV2,scratchV3,\
                                     keepstates=checkpointstates,keepinds=checkpointinds,
                                     Ninv=cf.integration.NIterForInverse, integMethod = cf.integration.integMethod)
    else:
        ca.Copy(It, I0)
        ca.Copy(mt, m0)
        ca.SetToIdentity(ginv)
        ca.SetToIdentity(g)

    # write output
    if cf.io.outputPrefix is not None:
        # scale back shotmomenta before writing
        if abs(cf.study.scaleMomenta) > 0.000000:
            ca.ApplyH(It, I0, ginv)
            ca.CoAd(mt, ginv, m0)
            ca.DivC_I(mt, float(cf.study.scaleMomenta))

        common.SaveITKImage(It, cf.io.outputPrefix + "I1.mhd")
        common.SaveITKField(mt, cf.io.outputPrefix + "m1.mhd")
        common.SaveITKField(ginv, cf.io.outputPrefix + "phiinv.mhd")
        common.SaveITKField(g, cf.io.outputPrefix + "phi.mhd")
        GeodesicShootingPlots(g, ginv, I0, It, cf)
        if cf.io.saveFrames:
            SaveFrames(checkpointstates, checkpointinds, I0, It, m0, mt, cf)
コード例 #5
0
def BuildHGM(cf):
    """Worker for running Hierarchical Geodesic Model (HGM) 
n    for group geodesic estimation on a subset of individuals. 
    Runs HGM on this subset sequentially. The variations retuned
    are summed up to get update for all individuals"""

    size = Compute.GetMPIInfo()['size']
    rank = Compute.GetMPIInfo()['rank']
    name = Compute.GetMPIInfo()['name']
    localRank = Compute.GetMPIInfo()['local_rank']
    nodename = socket.gethostname()

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # just one reporter process on each node
    isReporter = rank == 0
    cf.study.numSubjects = len(cf.study.subjectIntercepts)
    if isReporter:
        # Output loaded config
        if cf.io.outputPrefix is not None:
            cfstr = Config.ConfigToYAML(HGMConfigSpec, cf)
            with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
                f.write(cfstr)
    #common.DebugHere()

    # if MPI check if processes are greater than number of subjects. it is okay if there are more subjects than processes

    if cf.compute.useMPI and (cf.study.numSubjects < cf.compute.numProcesses):
        raise Exception("Please don't use more processes " +
                        "than total number of individuals")

    # subdivide data, create subsets for this thread to work on
    nodeSubjectIds = cf.study.subjectIds[rank::cf.compute.numProcesses]
    nodeIntercepts = cf.study.subjectIntercepts[rank::cf.compute.numProcesses]
    nodeSlopes = cf.study.subjectSlopes[rank::cf.compute.numProcesses]
    nodeBaselineTimes = cf.study.subjectBaselineTimes[rank::cf.compute.
                                                      numProcesses]
    sys.stdout.write(
        "This is process %d of %d with name: %s on machinename: %s and local rank: %d.\nnodeIntercepts: %s\n nodeSlopes: %s\n nodeBaselineTimes: %s\n"
        % (rank, size, name, nodename, localRank, nodeIntercepts, nodeSlopes,
           nodeBaselineTimes))

    # mem type is determined by whether or not we're using CUDA
    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST

    # load data in memory
    # load intercepts
    J = [
        common.LoadITKImage(f, mType) if isinstance(f, str) else f
        for f in nodeIntercepts
    ]

    # load slopes
    n = [
        common.LoadITKField(f, mType) if isinstance(f, str) else f
        for f in nodeSlopes
    ]

    # get imGrid from data
    imGrid = J[0].grid()

    # create time array with checkpointing info for group geodesic
    (t, Jind, gCpinds) = HGMSetUpTimeArray(cf.optim.nTimeStepsGroup,
                                           nodeBaselineTimes, 0.0000001)
    tdiscGroup = CAvmHGMCommon.HGMSetupTimeDiscretizationGroup(
        t, J, n, Jind, gCpinds, mType, nodeSubjectIds)

    # create time array with checkpointing info for residual geodesic
    (s, scratchInd, rCpinds) = HGMSetUpTimeArray(cf.optim.nTimeStepsResidual,
                                                 [1.0], 0.0000001)
    tdiscResidual = CAvmHGMCommon.HGMSetupTimeDiscretizationResidual(
        s, rCpinds, imGrid, mType)

    # create group state and residual state
    groupState = CAvmHGMCommon.HGMGroupState(
        imGrid,
        mType,
        cf.vectormomentum.diffOpParamsGroup[0],
        cf.vectormomentum.diffOpParamsGroup[1],
        cf.vectormomentum.diffOpParamsGroup[2],
        t,
        cf.optim.NIterForInverse,
        cf.vectormomentum.varIntercept,
        cf.vectormomentum.varSlope,
        cf.vectormomentum.varInterceptReg,
        cf.optim.stepSizeGroup,
        integMethod=cf.optim.integMethodGroup)

    #ca.Copy(groupState.I0, common.LoadITKImage('/usr/sci/projects/ADNI/nikhil/software/vectormomentumtest/TestData/FlowerData/Longitudinal/GroupGeodesic/I0.mhd', mType))

    # note that residual state is treated a scratch variable in this algorithm and reused for computing residual geodesics of multiple individual
    residualState = CAvmHGMCommon.HGMResidualState(
        None,
        None,
        imGrid,
        mType,
        cf.vectormomentum.diffOpParamsResidual[0],
        cf.vectormomentum.diffOpParamsResidual[1],
        cf.vectormomentum.diffOpParamsResidual[2],
        s,
        cf.optim.NIterForInverse,
        cf.vectormomentum.varIntercept,
        cf.vectormomentum.varSlope,
        cf.vectormomentum.varInterceptReg,
        cf.optim.stepSizeResidual,
        integMethod=cf.optim.integMethodResidual)

    # start up the memory manager for scratch variables
    ca.ThreadMemoryManager.init(imGrid, mType, 0)

    # need some host memory in np array format for MPI reductions
    if cf.compute.useMPI:
        mpiImageBuff = None if mType == ca.MEM_HOST else ca.Image3D(
            imGrid, ca.MEM_HOST)
        mpiFieldBuff = None if mType == ca.MEM_HOST else ca.Field3D(
            imGrid, ca.MEM_HOST)
    for i in range(len(groupState.t) - 1, -1, -1):
        if tdiscGroup[i].J is not None:
            indx_last_individual = i
            break
    '''
    # initial template image
    ca.SetMem(groupState.I0, 0.0)
    tmp = ca.ManagedImage3D(imGrid, mType)

    for tdisc in tdiscGroup:
        if tdisc.J is not None:
            ca.Copy(tmp, tdisc.J)
            groupState.I0 += tmp
    del tmp
    if cf.compute.useMPI:
        Compute.Reduce(groupState.I0, mpiImageBuff)
    
    # divide by total num subjects
    groupState.I0 /= cf.study.numSubjects
    '''

    # run the loop

    for it in range(cf.optim.Niter):
        # compute HGM variation for group
        HGMGroupVariation(groupState, tdiscGroup, residualState, tdiscResidual,
                          cf.io.outputPrefix, rank, it)
        common.CheckCUDAError("Error after HGM iteration")
        # compute gradient for momenta (m is used as scratch)
        # if there are multiple nodes we'll need to sum across processes now
        if cf.compute.useMPI:
            # do an MPI sum
            Compute.Reduce(groupState.sumSplatI, mpiImageBuff)
            Compute.Reduce(groupState.sumJac, mpiImageBuff)
            Compute.Reduce(groupState.madj, mpiFieldBuff)
            # also sum up energies of other nodes
            # intercept
            Eintercept = np.array([groupState.EnergyHistory[-1][1]])
            mpi4py.MPI.COMM_WORLD.Allreduce(mpi4py.MPI.IN_PLACE,
                                            Eintercept,
                                            op=mpi4py.MPI.SUM)
            groupState.EnergyHistory[-1][1] = Eintercept[0]

            Eslope = np.array([groupState.EnergyHistory[-1][2]])
            mpi4py.MPI.COMM_WORLD.Allreduce(mpi4py.MPI.IN_PLACE,
                                            Eslope,
                                            op=mpi4py.MPI.SUM)
            groupState.EnergyHistory[-1][2] = Eslope[0]

        ca.Copy(groupState.m, groupState.m0)
        groupState.diffOp.applyInverseOperator(groupState.m)
        ca.Sub_I(groupState.m, groupState.madj)
        #groupState.diffOp.applyOperator(groupState.m)
        # now take gradient step in momenta for group
        if cf.optim.method == 'FIXEDGD':
            # take fixed stepsize gradient step
            ca.Add_MulC_I(groupState.m0, groupState.m, -cf.optim.stepSizeGroup)
        else:
            raise Exception("Unknown optimization scheme: " + cf.optim.method)
        # end if

        # now divide to get the new base image for group
        ca.Div(groupState.I0, groupState.sumSplatI, groupState.sumJac)

        # keep track of energy in this iteration
        if isReporter and cf.io.plotEvery > 0 and ((
            (it + 1) % cf.io.plotEvery == 0) or (it == cf.optim.Niter - 1)):
            HGMPlots(cf,
                     groupState,
                     tdiscGroup,
                     residualState,
                     tdiscResidual,
                     indx_last_individual,
                     writeOutput=True)

        if isReporter:
            (VEnergy, IEnergy, SEnergy) = groupState.EnergyHistory[-1]
            print datetime.datetime.now().time(
            ), " Iter", it, "of", cf.optim.Niter, ":", VEnergy + IEnergy + SEnergy, '(Total) = ', VEnergy, '(Vector) + ', IEnergy, '(Intercept) + ', SEnergy, '(Slope)'

    # write output images and fields
    HGMWriteOutput(cf, groupState, tdiscGroup, isReporter)
コード例 #6
0
def BuildGeoReg(cf):
    """Worker for running geodesic estimation on a subset of individuals
    """
    #common.DebugHere()
    localRank = Compute.GetMPIInfo()['local_rank']
    rank = Compute.GetMPIInfo()['rank']

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # just one reporter process on each node
    isReporter = rank == 0

    # load filenames and times for all subjects
    (subjectsIds, subjectsImagePaths,
     subjectsTimes) = GeoRegLoadSubjectsDetails(cf.study.subjectFile)
    cf.study.numSubjects = len(subjectsIds)
    if isReporter:
        # Output loaded config
        if cf.io.outputPrefix is not None:
            cfstr = Config.ConfigToYAML(GeoRegConfigSpec, cf)
            with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
                f.write(cfstr)

    # if MPI check if processes are greater than number of subjects. it is okay if there are more subjects than processes
    if cf.compute.useMPI and (len(subjectsIds) < cf.compute.numProcesses):
        raise Exception("Please don't use more processes " +
                        "than total number of individuals")

    nodeSubjectsIds = subjectsIds[rank::cf.compute.numProcesses]
    nodeSubjectsImagePaths = subjectsImagePaths[rank::cf.compute.numProcesses]
    nodeSubjectsTimes = subjectsTimes[rank::cf.compute.numProcesses]

    numLocalSubjects = len(nodeSubjectsImagePaths)
    if cf.study.initializationsFile is not None:
        (subjectsInitialImages,
         subjectsInitialMomenta) = GeoRegLoadSubjectsInitializations(
             cf.study.initializationsFile)
        nodeSubjectsInitialImages = subjectsInitialImages[rank::cf.compute.
                                                          numProcesses]
        nodeSubjectsInitialMomenta = subjectsInitialMomenta[rank::cf.compute.
                                                            numProcesses]

    print 'rank:', rank, ', localRank:', localRank, ', numberSubjects/TotalSubjects:', len(
        nodeSubjectsImagePaths
    ), '/', cf.study.numSubjects, ', nodeSubjectsImagePaths:', nodeSubjectsImagePaths, ', nodeSubjectsTimes:', nodeSubjectsTimes

    # mem type is determined by whether or not we're using CUDA
    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST

    # setting gpuid should be handled in gpu
    # if using GPU  set device based on local rank
    #if cf.compute.useCUDA:
    #    ca.SetCUDADevice(localRank)

    # get image size information
    dummyImToGetGridInfo = common.LoadITKImage(nodeSubjectsImagePaths[0][0],
                                               mType)
    imGrid = dummyImToGetGridInfo.grid()
    if cf.study.setUnitSpacing:
        imGrid.setSpacing(ca.Vec3Df(1.0, 1.0, 1.0))
    if cf.study.setZeroOrigin:
        imGrid.setOrigin(ca.Vec3Df(0, 0, 0))
    #del dummyImToGetGridInfo;

    # start up the memory manager for scratch variables
    ca.ThreadMemoryManager.init(imGrid, mType, 0)

    # allocate memory
    p = GeoRegVariables(imGrid,
                        mType,
                        cf.vectormomentum.diffOpParams[0],
                        cf.vectormomentum.diffOpParams[1],
                        cf.vectormomentum.diffOpParams[2],
                        cf.optim.NIterForInverse,
                        cf.vectormomentum.sigma,
                        cf.optim.stepSize,
                        integMethod=cf.optim.integMethod)
    # for each individual run geodesic regression for each subject
    for i in range(numLocalSubjects):

        # initializations for this subject
        if cf.study.initializationsFile is not None:
            # assuming the initializations are already preprocessed, in terms of intensities, origin and voxel scalings.
            p.I0 = common.LoadITKImage(nodeSubjectsInitialImages[i], mType)
            p.m0 = common.LoadITKField(nodeSubjectsInitialMomenta[i], mType)
        else:
            ca.SetMem(p.m0, 0.0)
            ca.SetMem(p.I0, 0.0)

        # allocate memory specific to this subject in steps a, b and c
        # a. create time array with checkpointing info for regression geodesic, allocate checkpoint memory
        (t, msmtinds, cpinds) = GeoRegSetUpTimeArray(cf.optim.nTimeSteps,
                                                     nodeSubjectsTimes[i],
                                                     0.001)
        cpstates = [(ca.Field3D(imGrid, mType), ca.Field3D(imGrid, mType))
                    for idx in cpinds]
        # b. allocate gradAtMeasurements of the length of msmtindex for storing residuals
        gradAtMsmts = [ca.Image3D(imGrid, mType) for idx in msmtinds]

        # c. load timepoint images for this subject
        Imsmts = [
            common.LoadITKImage(f, mType) if isinstance(f, str) else f
            for f in nodeSubjectsImagePaths[i]
        ]
        # reset stepsize if adaptive stepsize changed it inside
        p.stepSize = cf.optim.stepSize
        # preprocessimages
        GeoRegPreprocessInput(nodeSubjectsIds[i], cf, p, t, Imsmts, cpinds,
                              cpstates, msmtinds, gradAtMsmts)

        # run regression for this subject
        # REMEMBER
        # msmtinds index into cpinds
        # gradAtMsmts is parallel to msmtinds
        # cpinds index into t
        EnergyHistory = RunGeoReg(nodeSubjectsIds[i], cf, p, t, Imsmts, cpinds,
                                  cpstates, msmtinds, gradAtMsmts)

        # write output images and fields for this subject
        # TODO: BEWARE There are hardcoded numbers inside preprocessing code specific for ADNI/OASIS brain data.
        GeoRegWriteOuput(nodeSubjectsIds[i], cf, p, t, Imsmts, cpinds,
                         cpstates, msmtinds, gradAtMsmts, EnergyHistory)

        # clean up memory specific to this subject
        del t, Imsmts, cpinds, cpstates, msmtinds, gradAtMsmts