def __init__(self, agents=[], tolerance=0.0001, act_T=1000, **kwds):
     '''
     Make a new instance of StickyCobbDouglasEconomy by filling in attributes
     specific to this kind of market.
     
     Parameters
     ----------
     agents : [ConsumerType]
         List of types of consumers that live in this economy.
     tolerance: float
         Minimum acceptable distance between "dynamic rules" to consider the
         solution process converged.  Distance depends on intercept and slope
         of the log-linear "next capital ratio" function.
     act_T : int
         Number of periods to simulate when making a history of of the market.
         
     Returns
     -------
     None
     '''
     CobbDouglasEconomy.__init__(self,
                                 agents=agents,
                                 tolerance=tolerance,
                                 act_T=act_T,
                                 **kwds)
     self.reap_vars = ['aLvlNow', 'pLvlTrue']
コード例 #2
0
print('Average aggregate consumption = ' + str(np.mean(StickySOEconsumers.cNrmNow_hist[ignore_periods:,:]*StickySOEconsumers.pLvlNow_hist[ignore_periods:,:])))
print('Standard deviation of log aggregate assets = ' + str(np.std(np.log(np.mean(StickySOEconsumers.aLvlNow_hist[ignore_periods:,:],axis=1)))))
LogC = np.log(np.mean(StickySOEconsumers.cNrmNow_hist*StickySOEconsumers.pLvlNow_hist,axis=1))[ignore_periods:]
DeltaLogC = LogC[1:] - LogC[0:-1]
print('Standard deviation of change in log aggregate consumption = ' + str(np.std(DeltaLogC)))
print('Standard deviation of log individual assets = ' + str(np.mean(np.std(np.log(StickySOEconsumers.aLvlNow_hist[ignore_periods:,:]),axis=1))))
print('Standard deviation of log individual consumption = ' + str(np.mean(np.std(np.log(StickySOEconsumers.cNrmNow_hist[ignore_periods:,:]*StickySOEconsumers.pLvlNow_hist[ignore_periods:,:]),axis=1))))
print('Standard deviation of log individual productivity = ' + str(np.mean(np.std(np.log(StickySOEconsumers.pLvlNow_hist[ignore_periods:,:]),axis=1))))
Logc = np.log(StickySOEconsumers.cNrmNow_hist*StickySOEconsumers.pLvlNow_hist)[ignore_periods:,:]
DeltaLogc = Logc[1:,:] - Logc[0:-1,:]
print('Standard deviation of change in log individual consumption = ' + str(np.mean(np.std(DeltaLogc,axis=1))))


# Make a Cobb Douglas economy and the representative agent who lives in it
StickyDSGEconsumer = StickyEconsumerDSGEType(**init_DSGE_consumer)
StickyDSGEeconomy = CobbDouglasEconomy(**init_DSGE_market)
StickyDSGEeconomy.agents = [StickyDSGEconsumer]
StickyDSGEeconomy.makeAggShkHist()
StickyDSGEconsumer.getEconomyData(StickyDSGEeconomy)
StickyDSGEconsumer.track_vars = ['aLvlNow','mNrmNow','cNrmNow','pLvlNow','pLvlErrNow']

# Test the solution
StickyDSGEeconomy.solve()

m_grid = np.linspace(0,10,200)
for M in StickyDSGEconsumer.Mgrid.tolist():
    c_at_this_M = StickyDSGEconsumer.solution[0].cFunc(m_grid,M*np.ones_like(m_grid))
    plt.plot(m_grid,c_at_this_M)
plt.show()

print('Average aggregate assets = ' + str(np.mean(StickyDSGEconsumer.aLvlNow_hist[ignore_periods:,:])))
コード例 #3
0
        'Impulse response to a one time permanent and transitive shock to income of 10%:'
    )
    plt.show()

    ##########################################

    # Now do aggregate shocks of a market
    # Make an aggregate shocks consumer
    AggShockExample = AggShockConsumerType(**Params.init_agg_shocks)
    AggShockExample.cycles = 0
    AggShockExample.sim_periods = 3000
    AggShockExample.makeIncShkHist(
    )  # Simulate a history of idiosyncratic shocks
    # Make a Cobb-Douglas economy for the agents
    EconomyExample = CobbDouglasEconomy(agents=[AggShockExample],
                                        act_T=AggShockExample.sim_periods,
                                        **Params.init_cobb_douglas)
    EconomyExample.makeAggShkHist()  # Simulate a history of aggregate shocks

    # Have the consumers inherit relevant objects from the economy
    AggShockExample.getEconomyData(EconomyExample)

    # Solve the microeconomic model for the aggregate shocks example type (and display results)
    t_start = clock()
    AggShockExample.solve()
    t_end = clock()
    print('Solving an aggregate shocks consumer took ' +
          mystr(t_end - t_start) + ' seconds.')

    #    # Solve the "macroeconomic" model by searching for a "fixed point dynamic rule"
    #    t_start = clock()
コード例 #4
0
            agg_shocks_type_list.append(new_type)
        if Params.do_beta_dist:
            beta_agg = beta_dist_estimate
            nabla_agg = nabla_estimate
        else:
            beta_agg = beta_point_estimate
            nabla_agg = 0.0
        DiscFac_list_agg = approxUniform(N=Params.pref_type_count,
                                         bot=beta_agg - nabla_agg,
                                         top=beta_agg + nabla_agg)[1]
        assignBetaDistribution(agg_shocks_type_list, DiscFac_list_agg)

        # Make a market for solving the FBS aggregate shocks model
        agg_shocks_market = CobbDouglasEconomy(
            agents=agg_shocks_type_list,
            act_T=Params.sim_periods_agg_shocks,
            tolerance=0.0001,
            **Params.aggregate_params)
        agg_shocks_market.makeAggShkHist()

        # Edit the consumer types so they have the right data
        for this_type in agg_shocks_market.agents:
            this_type.p_init = drawMeanOneLognormal(N=this_type.Nagents,
                                                    sigma=0.9,
                                                    seed=0)
            this_type.getEconomyData(agg_shocks_market)

        # Solve the aggregate shocks version of the model
        t_start = time()
        agg_shocks_market.solve()
        t_end = time()
コード例 #5
0
ファイル: cstwMPC.py プロジェクト: chiomh/HARK
     new_type.seed = j
     new_type.resetRNG()
     new_type.makeIncShkHist()
     agg_shocks_type_list.append(new_type)
 if Params.do_beta_dist:
     beta_agg = beta_dist_estimate
     nabla_agg = nabla_estimate
 else:
     beta_agg = beta_point_estimate
     nabla_agg = 0.0
 DiscFac_list_agg = approxUniform(N=Params.pref_type_count,bot=beta_agg-nabla_agg,top=beta_agg+nabla_agg)[1]
 assignBetaDistribution(agg_shocks_type_list,DiscFac_list_agg)
 
 # Make a market for solving the FBS aggregate shocks model
 agg_shocks_market = CobbDouglasEconomy(agents = agg_shocks_type_list,
                 act_T         = Params.sim_periods_agg_shocks,
                 tolerance     = 0.0001,
                 **Params.aggregate_params)
 agg_shocks_market.makeAggShkHist()
 
 # Edit the consumer types so they have the right data
 for this_type in agg_shocks_market.agents:
     this_type.p_init = drawMeanOneLognormal(N=this_type.Nagents,sigma=0.9,seed=0)
     this_type.getEconomyData(agg_shocks_market)
 
 # Solve the aggregate shocks version of the model
 t_start = time()
 agg_shocks_market.solve()
 t_end = time()
 print('Solving the aggregate shocks model took ' + str(t_end - t_start) + ' seconds.')
 for this_type in agg_shocks_type_list:
     this_type.W_history = this_type.pHist*this_type.bHist
コード例 #6
0
    # Make an aggregate shocks sticky expectations consumer
    StickyExample = AggShockStickyExpectationsConsumerType(
        **Params.init_sticky_shocks)
    NotStickyExample = AggShockConsumerType(**Params.init_sticky_shocks)
    StickyExample.cycles = 0
    NotStickyExample.cycles = 0
    StickyExample.sim_periods = 3000
    NotStickyExample.sim_periods = 3000
    StickyExample.makeIncShkHist(
    )  # Simulate a history of idiosyncratic shocks
    NotStickyExample.makeIncShkHist(
    )  # Simulate a history of idiosyncratic shocks

    # Make a Cobb-Douglas economy for the agents
    StickyEconomyExample = CobbDouglasEconomy(agents=[StickyExample],
                                              act_T=StickyExample.sim_periods,
                                              **Params.init_cobb_douglas)
    NotStickyEconomyExample = CobbDouglasEconomy(
        agents=[NotStickyExample],
        act_T=NotStickyExample.sim_periods,
        **Params.init_cobb_douglas)
    StickyEconomyExample.makeAggShkHist(
    )  # Simulate a history of aggregate shocks
    NotStickyEconomyExample.makeAggShkHist(
    )  # Simulate a history of aggregate shocks

    # Have the consumers inherit relevant objects from the economy
    StickyExample.getEconomyData(StickyEconomyExample)
    NotStickyExample.getEconomyData(NotStickyEconomyExample)

    # Solve the microeconomic model for the aggregate shocks example type (and display results)