return cross_entropy model = VGG19(3) # model =ResNet50(3) opt = keras.optimizers.Adam(learning_rate=0.0001) # opt = keras.optimizers.SGD(learning_rate=1,momentum=0.001) model.compile(optimizer=opt, loss="categorical_crossentropy", metrics='accuracy') # model.compile(optimizer =opt, loss=weighted_categorical_crossentropy, metrics='accuracy') model.summary() dt = DataLoader() X_Data, Y_Data = dt.LoadTrainingData( "D:\Sergey\FluorocodeMain\FluorocodeMain\DataForTraining.npz") x_v, y_v = dt.LoadTrainingData( "D:\Sergey\FluorocodeMain\FluorocodeMain\DataForValidation.npz") history = model.fit(X_Data, Y_Data, batch_size=4, shuffle=True, epochs=100, validation_data=(x_v, y_v)) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model accuracy')
pixelsz = 39.68 ResEnhancement = 2 # genomes = ['Other','CP014051','CP039296','CP000948'] # genomes = ['NC_000913.3','Other','CP014051','CP014787'] genomes = ['NC_000913.3', 'CP014051', 'CP014787', 'NZ_CP009467.1'] # genomes = ['CP014787'] # genomes = ['CP000948'] # genomes = ['CP014051','CP039296', 'CP009467.1','CP014787','CP000948'] AllLabels = [] AllProfiles = [] numsamples = 5000 Dt = DataConverter() Ds = DataLoader() for genome in genomes: EffLabeledTraces = [] SIMTRC = SIMTraces.TSIMTraces(genome, 1.66, 0.34, 0, 'TaqI', pixelsz) Gauss = Misc.GetGauss1d( size, Misc.FWHMtoSigma(Misc.GetFWHM(Wavelength, NA, ResEnhancement)), pixelsz) if genome != 'Other': Profiles = [] ReCuts = SIMTRC.GetTraceRestrictions() ReCutsInPx = SIMTRC.GetDyeLocationsInPixel(ReCuts) R = RTG.RandomTraceGenerator(Misc.kbToPx(100000, SIMTRC), Misc.kbToPx(20000, SIMTRC), numsamples)