コード例 #1
0
        fig = 40 + iPlot
        fig = FreqTrans.PlotBode(freqLin_hz, gainLoLinNom_mag[iOut, iIn], phaseLoLinNom_deg[iOut, iIn], coher_nd = cohLoLin_mag[iOut, iIn], gainUnc_mag = gainLoLinUnc_mag[iOut, iIn], fig = fig, dB = True, color='k', label='Linear Model')
        fig = FreqTrans.PlotBode(freq_hz[iIn], gainLoEstNom_mag[iOut, iIn], phaseLoEstNom_deg[iOut, iIn], coher_nd = cohLoEst_mag[iOut, iIn], gainUnc_mag = gainLoEstUnc_mag[iOut, iIn], fig = fig, dB = True, color='b', label='Estimate [MIMO]')
        fig = FreqTrans.PlotBode(freq_hz[iIn, sigIndx[iIn]], gainLoEstNom_mag[iOut, iIn, sigIndx[iIn]], phaseLoEstNom_deg[iOut, iIn, sigIndx[iIn]], coher_nd = cohLoEst_mag[iOut, iIn, sigIndx[iIn]], gainUnc_mag = gainLoEstUnc_mag[iOut, iIn, sigIndx[iIn]], fig = fig, dB = True, color='g', label='Estimate [SIMO]')
        
        ax = fig.get_axes()
        handles, labels = ax[0].get_legend_handles_labels()
        handles = [handles[0], handles[3], handles[1], handles[4], handles[2], handles[5]]
        labels = [labels[0], labels[3], labels[1], labels[4], labels[2], labels[5]]
        ax[0].legend(handles, labels)
    
        fig.suptitle('$L_o$ : ' + '$r_{Exc}$[' + str(iIn) + '] to ' + '$z$[' + str(iOut) + ']')

    
#%% Vector Margin Plots - Output Stability
rCritLoLinNom_mag, rCritLoLinUnc_mag, rCritLoLinMin_mag = FreqTrans.DistCrit(LoLinNom, LoLinUnc, typeUnc = 'circle')
rCritLoEstNom_mag, rCritLoEstUnc_mag, rCritLoEstMin_mag = FreqTrans.DistCrit(LoEstNom, LoEstUnc, typeUnc = 'circle')

if True:
    numOut, numIn = LoLinNom.shape[0:-1]
    ioArray = np.array(np.meshgrid(np.arange(numOut), np.arange(numIn))).T.reshape(-1, 2)

    for iPlot, io in enumerate(ioArray):
        [iOut, iIn] = io
        
        fig = 30 + iPlot
        fig = FreqTrans.PlotVectorMargin(freqLin_hz, rCritLoLinNom_mag[iOut, iIn], cohLoLin_mag[iOut, iIn], rCritLoLinUnc_mag[iOut, iIn], fig = fig, linestyle='-', color='k', label='Linear Model')
        fig = FreqTrans.PlotVectorMargin(freq_hz[iIn], rCritLoEstNom_mag[iOut, iIn], cohLoEst_mag[iOut, iIn], rCritLoEstUnc_mag[iOut, iIn], fig = fig, linestyle='-', marker='.', color='b', label='Estimate [MIMO]')
        fig = FreqTrans.PlotVectorMargin(freq_hz[iIn, sigIndx[iIn]], rCritLoEstNom_mag[iOut, iIn, sigIndx[iIn]], cohLoEst_mag[iOut, iIn, sigIndx[iIn]], rCritLoEstUnc_mag[iOut, iIn, sigIndx[iIn]], fig = fig, linestyle='None', marker='.', color='g', label='Estimate [SIMO]')
        
        ax = fig.get_axes()
コード例 #2
0
    ax = fig.get_axes()
    ax[0].set_xlim(0, 10)
    # ax[0].set_yscale('log')
    ax[0].set_ylim(0, 2)

#%% Vector Margin Plots
inPlot = sysCL.InputName[:3]
outPlot = [inName.replace('exc', 'fb') for inName in inPlot]

numOut = len(outPlot)
numIn = len(inPlot)
ioArray = np.array(np.meshgrid(np.arange(numOut),
                               np.arange(numIn))).T.reshape(-1, 2)

#
rCritLaLinNom_mag, rCritLaLinUnc_mag, rCritLaLinLower_mag = FreqTrans.DistCrit(
    LaLinNom, LaLinUnc, typeUnc='circle')
rCritLaEstNom_mag, rCritLaEstUnc_mag, rCritLaEstLower_mag = FreqTrans.DistCrit(
    LaEstNom, LaEstUnc, typeUnc='circle')

if False:
    for iPlot, io in enumerate(ioArray):
        iOut, iIn = io

        outName = outPlot[iOut]
        inName = inPlot[iIn]

        fig = 40 + iPlot
        #        fig = FreqTrans.PlotVectorMargin(freqLin_hz, rCritLaLinNom_mag[iOut, iIn], coher_nd = np.ones_like(freqLin_hz), fig = fig, color = 'k', label = 'Linear')
        fig = FreqTrans.PlotVectorMargin(freqLin_hz,
                                         rCritLaLinNom_mag[iOut, iIn],
                                         vmUnc_mag=rCritLaLinUnc_mag[iOut,
コード例 #3
0
for i in range(T.shape[-1]):
    T[..., i] = (Teb[..., i].T @ np.linalg.inv(Tev[..., i].T)).T

sigmaNom_mag, _ = FreqTrans.Sigma(T)  # Singular Value Decomp

# Coherence
C = Ceb

T_InputName = exc_names
T_OutputName = fbName

gain_mag, phase_deg = FreqTrans.GainPhase(T,
                                          magUnit='mag',
                                          phaseUnit='deg',
                                          unwrap=True)
rCritNom_mag, _, _ = FreqTrans.DistCrit(T, typeUnc='ellipse')
#rCritNom_mag, rCritUnc_mag, rCrit_mag = FreqTrans.DistCrit(T, TUnc, typeUnc = 'ellipse')
#rCritNom_mag, rCritUnc_mag, rCrit_mag, pCont_mag = FreqTrans.DistCritEllipse(T, TUnc) # Returns closest approach points

#%% Sigma Plot
Cmin = np.min(np.min(C, axis=0), axis=0)
sigmaNom_magMin = np.min(sigmaNom_mag, axis=0)

fig = 20
fig = FreqTrans.PlotSigma(freqLin_hz,
                          sigmaLin_mag,
                          coher_nd=np.ones_like(freqLin_hz),
                          fig=fig,
                          fmt='k',
                          label='Linear')
fig = FreqTrans.PlotSigma(freq_hz,