def _create_subject_public_key_info(algo_oid, secret_key, params=None): if params is None: params = DerNull() spki = DerSequence([ DerSequence([DerObjectId(algo_oid), params]), DerBitString(secret_key) ]) return spki.encode()
def _expand_subject_public_key_info(encoded): """Parse a SubjectPublicKeyInfo structure. It returns a triple with: * OID (string) * encoded public key (bytes) * Algorithm parameters (bytes or None) """ # # SubjectPublicKeyInfo ::= SEQUENCE { # algorithm AlgorithmIdentifier, # subjectPublicKey BIT STRING # } # # AlgorithmIdentifier ::= SEQUENCE { # algorithm OBJECT IDENTIFIER, # parameters ANY DEFINED BY algorithm OPTIONAL # } # spki = DerSequence().decode(encoded, nr_elements=2) algo = DerSequence().decode(spki[0], nr_elements=(1, 2)) algo_oid = DerObjectId().decode(algo[0]) spk = DerBitString().decode(spki[1]).value if len(algo) == 1: algo_params = None else: try: DerNull().decode(algo[1]) algo_params = None except: algo_params = algo[1] return algo_oid.value, spk, algo_params
def wrap(private_key, key_oid, passphrase=None, protection=None, prot_params=None, key_params=None, randfunc=None): """Wrap a private key into a PKCS#8 blob (clear or encrypted). Args: private_key (byte string): The private key encoded in binary form. The actual encoding is algorithm specific. In most cases, it is DER. key_oid (string): The object identifier (OID) of the private key to wrap. It is a dotted string, like ``1.2.840.113549.1.1.1`` (for RSA keys). passphrase (bytes string or string): The secret passphrase from which the wrapping key is derived. Set it only if encryption is required. protection (string): The identifier of the algorithm to use for securely wrapping the key. The default value is ``PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC``. prot_params (dictionary): Parameters for the protection algorithm. +------------------+-----------------------------------------------+ | Key | Description | +==================+===============================================+ | iteration_count | The KDF algorithm is repeated several times to| | | slow down brute force attacks on passwords | | | (called *N* or CPU/memory cost in scrypt). | | | The default value for PBKDF2 is 1000. | | | The default value for scrypt is 16384. | +------------------+-----------------------------------------------+ | salt_size | Salt is used to thwart dictionary and rainbow | | | attacks on passwords. The default value is 8 | | | bytes. | +------------------+-----------------------------------------------+ | block_size | *(scrypt only)* Memory-cost (r). The default | | | value is 8. | +------------------+-----------------------------------------------+ | parallelization | *(scrypt only)* CPU-cost (p). The default | | | value is 1. | +------------------+-----------------------------------------------+ key_params (DER object): The algorithm parameters associated to the private key. It is required for algorithms like DSA, but not for others like RSA. randfunc (callable): Random number generation function; it should accept a single integer N and return a string of random data, N bytes long. If not specified, a new RNG will be instantiated from :mod:`Cryptodome.Random`. Return: The PKCS#8-wrapped private key (possibly encrypted), as a byte string. """ if key_params is None: key_params = DerNull() # # PrivateKeyInfo ::= SEQUENCE { # version Version, # privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, # privateKey PrivateKey, # attributes [0] IMPLICIT Attributes OPTIONAL # } # pk_info = DerSequence([ 0, DerSequence([DerObjectId(key_oid), key_params]), DerOctetString(private_key) ]) pk_info_der = pk_info.encode() if passphrase is None: return pk_info_der if not passphrase: raise ValueError("Empty passphrase") # Encryption with PBES2 passphrase = tobytes(passphrase) if protection is None: protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC' return PBES2.encrypt(pk_info_der, passphrase, protection, prot_params, randfunc)
def testDecode1(self): # Empty sequence der = DerNull() self.assertEquals(der, der.decode(b('\x05\x00')))
raise ValueError("Not a valid PrivateKeyInfo SEQUENCE") # PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier # # EncryptedPrivateKeyInfo ::= SEQUENCE { # encryptionAlgorithm EncryptionAlgorithmIdentifier, # encryptedData EncryptedData # } # EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier # AlgorithmIdentifier ::= SEQUENCE { # algorithm OBJECT IDENTIFIER, # parameters ANY DEFINED BY algorithm OPTIONAL # } algo = DerSequence().decode(pk_info[1], nr_elements=(1, 2)) algo_oid = DerObjectId().decode(algo[0]).value if len(algo) == 1: algo_params = None else: try: DerNull().decode(algo[1]) algo_params = None except: algo_params = algo[1] # EncryptedData ::= OCTET STRING private_key = DerOctetString().decode(pk_info[2]).payload return (algo_oid, private_key, algo_params)
def testEncode1(self): der = DerNull() self.assertEquals(der.encode(), b('\x05\x00'))
def _EMSA_PKCS1_V1_5_ENCODE(msg_hash, emLen, with_hash_parameters=True): """ Implement the ``EMSA-PKCS1-V1_5-ENCODE`` function, as defined in PKCS#1 v2.1 (RFC3447, 9.2). ``_EMSA-PKCS1-V1_5-ENCODE`` actually accepts the message ``M`` as input, and hash it internally. Here, we expect that the message has already been hashed instead. :Parameters: msg_hash : hash object The hash object that holds the digest of the message being signed. emLen : int The length the final encoding must have, in bytes. with_hash_parameters : bool If True (default), include NULL parameters for the hash algorithm in the ``digestAlgorithm`` SEQUENCE. :attention: the early standard (RFC2313) stated that ``DigestInfo`` had to be BER-encoded. This means that old signatures might have length tags in indefinite form, which is not supported in DER. Such encoding cannot be reproduced by this function. :Return: An ``emLen`` byte long string that encodes the hash. """ # First, build the ASN.1 DER object DigestInfo: # # DigestInfo ::= SEQUENCE { # digestAlgorithm AlgorithmIdentifier, # digest OCTET STRING # } # # where digestAlgorithm identifies the hash function and shall be an # algorithm ID with an OID in the set PKCS1-v1-5DigestAlgorithms. # # PKCS1-v1-5DigestAlgorithms ALGORITHM-IDENTIFIER ::= { # { OID id-md2 PARAMETERS NULL }| # { OID id-md5 PARAMETERS NULL }| # { OID id-sha1 PARAMETERS NULL }| # { OID id-sha256 PARAMETERS NULL }| # { OID id-sha384 PARAMETERS NULL }| # { OID id-sha512 PARAMETERS NULL } # } # # Appendix B.1 also says that for SHA-1/-2 algorithms, the parameters # should be omitted. They may be present, but when they are, they shall # have NULL value. digestAlgo = DerSequence([DerObjectId(msg_hash.oid).encode()]) if with_hash_parameters: digestAlgo.append(DerNull().encode()) digest = DerOctetString(msg_hash.digest()) digestInfo = DerSequence([digestAlgo.encode(), digest.encode()]).encode() # We need at least 11 bytes for the remaining data: 3 fixed bytes and # at least 8 bytes of padding). if emLen < len(digestInfo) + 11: raise TypeError( "Selected hash algorith has a too long digest (%d bytes)." % len(digest)) PS = b'\xFF' * (emLen - len(digestInfo) - 3) return b'\x00\x01' + PS + b'\x00' + digestInfo
def unwrap(p8_private_key, passphrase=None): """Unwrap a private key from a PKCS#8 blob (clear or encrypted). Args: p8_private_key (byte string): The private key wrapped into a PKCS#8 blob, DER encoded. passphrase (byte string or string): The passphrase to use to decrypt the blob (if it is encrypted). Return: A tuple containing #. the algorithm identifier of the wrapped key (OID, dotted string) #. the private key (byte string, DER encoded) #. the associated parameters (byte string, DER encoded) or ``None`` Raises: ValueError : if decoding fails """ if passphrase: passphrase = tobytes(passphrase) found = False try: p8_private_key = PBES1.decrypt(p8_private_key, passphrase) found = True except PbesError as e: error_str = "PBES1[%s]" % str(e) except ValueError: error_str = "PBES1[Invalid]" if not found: try: p8_private_key = PBES2.decrypt(p8_private_key, passphrase) found = True except PbesError as e: error_str += ",PBES2[%s]" % str(e) except ValueError: error_str += ",PBES2[Invalid]" if not found: raise ValueError("Error decoding PKCS#8 (%s)" % error_str) pk_info = DerSequence().decode(p8_private_key, nr_elements=(2, 3, 4)) if len(pk_info) == 2 and not passphrase: raise ValueError("Not a valid clear PKCS#8 structure " "(maybe it is encrypted?)") # # PrivateKeyInfo ::= SEQUENCE { # version Version, # privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, # privateKey PrivateKey, # attributes [0] IMPLICIT Attributes OPTIONAL # } # Version ::= INTEGER if pk_info[0] != 0: raise ValueError("Not a valid PrivateKeyInfo SEQUENCE") # PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier # # EncryptedPrivateKeyInfo ::= SEQUENCE { # encryptionAlgorithm EncryptionAlgorithmIdentifier, # encryptedData EncryptedData # } # EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier # AlgorithmIdentifier ::= SEQUENCE { # algorithm OBJECT IDENTIFIER, # parameters ANY DEFINED BY algorithm OPTIONAL # } algo = DerSequence().decode(pk_info[1], nr_elements=(1, 2)) algo_oid = DerObjectId().decode(algo[0]).value if len(algo) == 1: algo_params = None else: try: DerNull().decode(algo[1]) algo_params = None except: algo_params = algo[1] # EncryptedData ::= OCTET STRING private_key = DerOctetString().decode(pk_info[2]).payload return (algo_oid, private_key, algo_params)