コード例 #1
0
ファイル: File.py プロジェクト: mahajrod/GAVGAV
    def intersect_ids(list_of_group_a, list_of_group_b, mode="common"):
        # possible modes: common, only_a, only_b, not_common,  combine, count
        a = IdSet()
        b = IdSet()

        if mode == "common":
            expression = lambda a, b: a & b
        elif mode == "only_a":
            expression = lambda a, b: a - b
        elif mode == "only_b":
            expression = lambda a, b: b - a
        elif mode == "not_common":
            expression = lambda a, b: a ^ b
        elif mode == "combine":
            expression = lambda a, b: a | b

        for id_list in list_of_group_a:
            a = a | IdSet(id_list)

        for id_list in list_of_group_b:
            b = b | IdSet(id_list)

        if mode != "count":
            return IdSet(expression(a, b))
        else:
            return len(a), len(b), len(a & b), len(a - b), len(b - a), len(a ^ b), len(a | b)
コード例 #2
0
ファイル: SequenceCluster.py プロジェクト: melakbet/MAVR
 def extract_monocluster_ids_from_file(self,
                                       dir_with_cluster_files,
                                       out_file,
                                       file_with_white_list_ids=None):
     # filenames are counted as species names
     white_list_ids = None
     if file_with_white_list_ids:
         white_list_ids = IdSet()
         white_list_ids.read(file_with_white_list_ids)
     clusters_dict = self.read_cluster_files_from_dir(
         dir_with_cluster_files)
     monoclusters = self.extract_monocluster_ids(
         clusters_dict, out_file=out_file, white_list_ids=white_list_ids)
     return monoclusters
コード例 #3
0
ファイル: SequenceCluster.py プロジェクト: melakbet/MAVR
 def get_sequence_names(clusters_dict,
                        write_ids=False,
                        out_prefix=None,
                        white_list_ids=None):
     sequence_names_dict = SynDict()
     for species in clusters_dict:
         sequence_names_dict[species] = IdSet()
     for species in clusters_dict:
         for cluster_id in clusters_dict[species]:
             if white_list_ids:
                 if cluster_id not in white_list_ids:
                     continue
             sequence_names_dict[species] = sequence_names_dict[
                 species] | IdSet(clusters_dict[species][cluster_id])
     if write_ids:
         for species in clusters_dict:
             out_file = "%s_%s.ids" % (
                 out_prefix, species) if out_prefix else "%s.ids" % species
             sequence_names_dict[species].write(out_file)
     return sequence_names_dict
コード例 #4
0
ファイル: SequenceCluster.py プロジェクト: melakbet/MAVR
    def extract_monocluster_ids(self,
                                clusters_dict,
                                white_list_ids=None,
                                out_file=None):
        """
        Extracts clusters with only one sequence in all species.
        """
        monocluster_ids = IdSet()
        cluster_names = self.get_cluster_names(clusters_dict)

        for cluster_name in cluster_names:
            for species in clusters_dict:
                if white_list_ids:
                    if cluster_name not in white_list_ids:
                        break
                if cluster_name not in clusters_dict[species]:
                    break
                if len(clusters_dict[species][cluster_name]) > 1:
                    break
            else:
                monocluster_ids.add(cluster_name)

        if out_file:
            monocluster_ids.write(out_file)

        return monocluster_ids
コード例 #5
0
    def rename_scaffolds_in_gff(self, input_gff, syn_file, output_prefix, verbose=True):

        syn_dict = SynDict(filename=syn_file)
        skipped_id_list = IdSet()

        output_gff = "%s.renamed.gff" % output_prefix
        skipped_gff = "%s.skipped.gff" % output_prefix
        skipped_id_file = "%s.skipped_scaffolds.ids" % output_prefix

        with self.metaopen(input_gff, "r") as in_fd, \
             self.metaopen(output_gff, "w") as out_fd, \
             self.metaopen(skipped_gff, "w") as skipped_fd:

            for line in in_fd:
                if line[0] == "#":
                    out_fd.write(line)
                gff_list = line.split("\t")
                if gff_list[0] in syn_dict:
                    gff_list[0] = syn_dict[gff_list[0]]
                    out_fd.write("\t".join(gff_list))
                else:
                    skipped_fd.write(line)
                    skipped_id_list.add(gff_list[0])

        if verbose:
            print("Not renamed scaffolds: %i" % len(skipped_id_list))

        skipped_id_list.write(skipped_id_file)
コード例 #6
0
    def get_column_value_set_from_file(self,
                                       input_file,
                                       column_number,
                                       output_file=None,
                                       separator="\t",
                                       comments_prefix="#",
                                       verbose=False):

        column_value_set = IdSet([
            line_list[column_number] for line_list in
            self.file_line_as_list_generator(input_file,
                                             separator=separator,
                                             comments_prefix=comments_prefix)
        ])
        if output_file:
            column_value_set.write(output_file)

        if verbose:
            print("#Column %i (0-based) contains %i different values" %
                  (column_number, len(column_value_set)))

        return column_value_set
コード例 #7
0
ファイル: SequenceCluster.py プロジェクト: melakbet/MAVR
    def get_cluster_names(clusters_dict, out_file=None, white_list_ids=None):
        cluster_names = IdSet()
        for species in clusters_dict:
            species_clusters = IdSet(clusters_dict[species].keys())
            cluster_names |= species_clusters
        if out_file:
            cluster_names.write(out_file)

        return cluster_names & IdSet(
            white_list_ids) if white_list_ids else cluster_names
コード例 #8
0
    def get_scaffold_ids_from_gff(gff_file, out_file=None):
        scaffold_id_set = IdSet()

        with open(gff_file, "r") as gff_fd:
            for line in gff_fd:
                if line[0] == "#":
                    continue
                scaffold_id = line.split("\t")[0]
                scaffold_id_set.add(scaffold_id)

        if out_file:
            scaffold_id_set.write(out_file)

        return scaffold_id_set
コード例 #9
0
                    help="Input fam file")
parser.add_argument("-d", "--id_file", action="store", dest="id_file", required=True,
                    help="File with ids of families to extract")
parser.add_argument("-o", "--output", action="store", dest="output", default="stdout",
                    help="File to write extracted families. Default - stdout")
parser.add_argument("-v", "--verbose", action="store_true", dest="verbose",
                    help="Print not found ids. Default - no")

args = parser.parse_args()

out_file = sys.stdout if args.output == "stdout" else open(args.output, "w")

fam_dict = SynDict()
fam_dict.read(args.input)

id_set = IdSet()
id_set.read(args.id_file)

extracted_dict = SynDict()
for id_entry in id_set:
    if id_entry in fam_dict:
        extracted_dict[id_entry] = fam_dict[id_entry]
    else:
        if args.verbose:
            print("%s was not found" % id_entry)

extracted_dict.write(out_file, close_after_if_file_object=True)



コード例 #10
0
ファイル: File.py プロジェクト: mahajrod/GAVGAV
    def intersect_ids_from_files(files_with_ids_from_group_a, files_with_ids_from_group_b,
                                 result_file=None, mode="common"):
        a = IdSet()
        b = IdSet()

        if mode == "common":
            expression = lambda a, b: a & b
        elif mode == "only_a":
            expression = lambda a, b: a - b
        elif mode == "only_b":
            expression = lambda a, b: b - a
        elif mode == "not_common":
            expression = lambda a, b: a ^ b
        elif mode == "combine":
            expression = lambda a, b: a | b

        #print(files_with_ids_from_group_a)
        for filename in [files_with_ids_from_group_a] if isinstance(files_with_ids_from_group_a, str) else files_with_ids_from_group_a:
            id_set = IdSet()
            id_set.read(filename, comments_prefix="#")
            a = a | id_set

        for filename in [files_with_ids_from_group_b] if isinstance(files_with_ids_from_group_b, str) else files_with_ids_from_group_b:
            id_set = IdSet()
            id_set.read(filename, comments_prefix="#")
            b = b | id_set

        result_fd = open(result_file, "w") if result_file else sys.stdout
        if mode != "count":
            final_set = IdSet(expression(a, b))
            final_set.write(result_fd)
        else:
            result_fd.write("Group_A\t%i\nGroup_B\t%i\nCommon\t%i\nOnly_group_A\t%i\nOnly_group_B\t%i\nNot_common\t%i\nAll\t%i\n" %
                            (len(a), len(b), len(a & b), len(a - b), len(b - a), len(a ^ b), len(a | b)))
コード例 #11
0
 def extract_transcripts_by_ids(self, input_gff, transcript_id_file, output_gff):
     transcript_ids = IdSet()
     transcript_ids.read(transcript_id_file, header=False)
     GFF.write(self.record_with_extracted_transcripts_generator(input_gff, transcript_ids),
               open(output_gff, "w"))
コード例 #12
0
for species in args.species_list:
    species_syn_dict[species] = read_synonyms_dict("%s%s/all.t" % (args.species_dir, species))

species_syn_dict.write("families_all_species.t", absent_symbol=".")

nonassembled = species_syn_dict.filter_by_line(filter_nonassembled)
species_syn_dict.write("correctly_assembled_families_species.t", absent_symbol=".")


nonassembled.write("not_assembled_families_in_all_species.t", absent_symbol=".")
complicated_families_dict = nonassembled.filter_by_line(filter_splited_to_several_fam)
complicated_families_dict.write("complicated_families.t", absent_symbol=".")

complicated_families_syn_dict = SynDict()
complicated_families_syn_ids = IdSet()
sl_keys = list(complicated_families_dict.sl_keys())
for sl_key in sl_keys:
    sp_set = set()
    for species in complicated_families_dict:
        if sl_key not in complicated_families_dict[species]:
            continue
        tmp = complicated_families_dict[species][sl_key].split(";")
        for i in range(0, len(tmp)):
            if "_" in tmp[i]:
                tmp[i] = tmp[i][2:]
            tmp[i] = tmp[i].split(",")
            for syn_id in tmp[i]:
                complicated_families_syn_ids.add(syn_id)
                sp_set.add(syn_id)
    complicated_families_syn_dict[sl_key] = sp_set
コード例 #13
0
ファイル: SequenceCluster.py プロジェクト: melakbet/MAVR
    def extract_sequences_by_clusters(self,
                                      dir_with_cluster_files,
                                      dir_with_sequence_files,
                                      output_dir,
                                      file_with_white_list_cluster_ids=None,
                                      mode="families",
                                      sequence_file_extension="fasta",
                                      sequence_file_format="fasta",
                                      label_species=False,
                                      separator_for_labeling="@",
                                      species_label_first=True):
        """
        basenames of cluster and sequence files must be same

        mode:
            clusters - extract sequences from clusters in separate files,
            species - extract sequences from species to separate files
        """
        white_list_ids = None
        if file_with_white_list_cluster_ids:
            white_list_ids = IdSet()
            white_list_ids.read(file_with_white_list_cluster_ids)

        clusters_dict = self.read_cluster_files_from_dir(
            dir_with_cluster_files)
        cluster_names = self.get_cluster_names(clusters_dict,
                                               white_list_ids=white_list_ids)

        sequence_super_dict = OrderedDict()
        out_dir = FileRoutines.check_path(output_dir)

        for species in clusters_dict:
            idx_file = "%s_tmp.idx" % species
            sequence_file = "%s%s.%s" % (FileRoutines.check_path(
                dir_with_sequence_files), species, sequence_file_extension)
            sequence_super_dict[species] = SeqIO.index_db(
                idx_file, sequence_file, format=sequence_file_format)

        if mode == "species":
            seqeuence_names = self.get_sequence_names(
                clusters_dict,
                write_ids=False,
                out_prefix=None,
                white_list_ids=white_list_ids)
            for species in seqeuence_names:
                out_file = "%s%s.%s" % (out_dir, species,
                                        sequence_file_extension)
                SeqIO.write(SequenceRoutines.record_by_id_generator(
                    sequence_super_dict[species], seqeuence_names[species]),
                            out_file,
                            format=sequence_file_format)
        elif mode == "families":

            def per_family_record_generator(seq_super_dict, clust_dict,
                                            cluster_id):
                if species_label_first:
                    label_sequence = lambda label, name: "%s%s%s" % (
                        label, separator_for_labeling, name)
                else:
                    label_sequence = lambda label, name: "%s%s%s" % (
                        name, separator_for_labeling, label)

                for species in seq_super_dict:
                    #print species, cluster_id
                    for record_id in clust_dict[species][cluster_id]:
                        if label_species:
                            record = deepcopy(
                                seq_super_dict[species][record_id])
                            record.id = label_sequence(species, record_id)
                            yield record
                        else:
                            yield seq_super_dict[species][record_id]

            for cluster_name in cluster_names:
                out_file = "%s%s.%s" % (out_dir, cluster_name,
                                        sequence_file_extension)
                SeqIO.write(per_family_record_generator(
                    sequence_super_dict, clusters_dict, cluster_name),
                            out_file,
                            format=sequence_file_format)

        for species in clusters_dict:
            os.remove("%s_tmp.idx" % species)
コード例 #14
0
"""
parser.add_argument("-o", "--output_file", action="store", dest="output", default="stdout",
                    help="Output file. Default: stdout")
"""
args = parser.parse_args()

# run after scripts/expansion/compare_cluster.py

# out_fd = sys.stdout if args.output == "stdout" else open(args.output, "w")

species_syn_dict = TwoLvlDict()

for species in args.species_list:
    species_syn_dict[species] = read_synonyms_dict("%s%s/all.t" %
                                                   (args.species_dir, species))

species_syn_dict.write("families_all_species.t", absent_symbol=".")

not_assembled = species_syn_dict.filter_by_line(is_assembled)
species_syn_dict.write("correctly_assembled_families_species.t",
                       absent_symbol=".")

assembled_ids = IdSet(species_syn_dict.sl_keys())
assembled_ids.write("assembled_families.ids")
not_assembled_ids = IdSet(not_assembled.sl_keys())
not_assembled_ids.write("non_assembled_families.ids")
"""
if args.output != "stdout":
    out_fd.close()
"""
コード例 #15
0
    def predict_genes(self,
                      output_prefix,
                      annotation_species_prefix,
                      genome_fasta,
                      augustus_species,
                      output_directory="./",
                      augustus_strand=None,
                      augustus_gene_model=None,
                      augustus_config_dir=None,
                      augustus_use_softmasking=None,
                      augustus_other_options="",
                      augustus_hintsfile=None,
                      augustus_extrinsicCfgFile=None,
                      augustus_predict_UTR=None,
                      augustus_min_intron_len=None,
                      threads=1,
                      augustus_dir="",
                      hmmer_dir="",
                      blast_dir="",
                      stop_codons_list=("TGA", "TAA", "TAG"),
                      genetic_code_table=1):

        draft_file_prefix = "%s/raw/%s" % (output_directory, output_prefix)

        augustus_splited_input_dir = "%s/splited_input/" % output_directory
        augustus_splited_output_dir = "%s/splited_output_dir" % output_directory

        output_raw_gff = "%s.raw.gff" % draft_file_prefix
        output_gff = "%s.renamed.gff" % draft_file_prefix
        augustus_pep = "%s.pep" % draft_file_prefix

        AUGUSTUS.path = augustus_dir
        AUGUSTUS.threads = threads
        HMMER3.path = hmmer_dir
        HMMER3.threads = threads
        BLASTp.path = blast_dir
        BLASTp.threads = threads

        print("Annotating genes...")
        AUGUSTUS.parallel_predict(
            augustus_species,
            genome_fasta,
            output_raw_gff,
            strand=augustus_strand,
            gene_model=augustus_gene_model,
            output_gff3=True,
            other_options=augustus_other_options,
            config_dir=augustus_config_dir,
            use_softmasking=augustus_use_softmasking,
            hints_file=augustus_hintsfile,
            split_dir=augustus_splited_input_dir,
            splited_output_dir=augustus_splited_output_dir,
            extrinsicCfgFile=augustus_extrinsicCfgFile,
            predict_UTR=augustus_predict_UTR,
            combine_output_to_single_file=True,
            min_intron_len=augustus_min_intron_len)

        #replace_augustus_ids(augustus_gff, output_prefix, species_prefix=None, number_of_digits_in_id=8):

        AUGUSTUS.replace_augustus_ids(output_raw_gff,
                                      draft_file_prefix,
                                      species_prefix=annotation_species_prefix,
                                      number_of_digits_in_id=8)
        #extract_transcript_sequences(self, input_gff_file, genomic_fasta_file, output_prefix, coding_only=False)
        gffread_file_prefix = "%s.gffread" % draft_file_prefix
        gffread_transcripts_file, gffread_cds_file, gffread_pep_file = Gffread.extract_transcript_sequences(
            output_gff, genome_fasta, gffread_file_prefix)
        gffread_trimmed_cds = ".".join(
            gffread_cds_file.split(".")[:-1]) + ".trimmed.cds"
        gffread_trimmed_pep = ".".join(
            gffread_pep_file.split(".")[:-1]) + ".trimmed.pep"
        self.trim_cds_and_remove_terminal_stop_codons(
            gffread_cds_file,
            gffread_trimmed_cds,
            stop_codons_list=stop_codons_list
        )  # using default stop_codons(from universal genetic_code)/ Note that this will affect mtDNA proteins
        inframe_stop_codons_file_prefix = "%s.inframe_stop_codon" % draft_file_prefix
        self.translate_sequences_from_file(
            gffread_trimmed_cds,
            gffread_trimmed_pep,
            format="fasta",
            id_expression=None,
            genetic_code_table=genetic_code_table,
            translate_to_stop=False,
            prefix_of_file_inframe_stop_codons_seqsin=
            inframe_stop_codons_file_prefix)  # Universal code !!!

        AUGUSTUS.extract_gene_ids_from_output(output_gff,
                                              all_annotated_genes_ids)
        AUGUSTUS.extract_CDS_annotations_from_output(output_gff, CDS_gff)

        print("Extracting peptides...")

        AUGUSTUS.extract_proteins_from_output(
            output_gff,
            output_pep,
            id_prefix="",
            evidence_stats_file=output_evidence_stats,
            supported_by_hints_file=output_supported_stats)

        self.compare_sequences_from_files(output_pep,
                                          "%s.trimmed.pep" % args.output,
                                          "comparison_of_peptides",
                                          format="fasta",
                                          verbose=True)

        os.system("awk -F'\\t' 'NR==1 {}; NR > 1 {print $2}' %s > %s" %
                  (output_supported_stats, output_supported_stats_ids))

        print("Annotating domains(Pfam database)...")

        HMMER3.parallel_hmmscan(
            args.pfam_db,
            output_pep,
            output_hmmscan,
            num_of_seqs_per_scan=None,
            split_dir="splited_hmmscan_fasta/",
            splited_output_dir="splited_hmmscan_output_dir",
            tblout_outfile=None,
            domtblout_outfile=output_domtblout,
            pfamtblout_outfile=None,
            splited_tblout_dir=None,
            splited_domtblout_dir="hmmscan_domtblout/")
        HMMER3.extract_dom_ids_hits_from_domtblout(
            output_domtblout, output_pfam_annotated_dom_ids)
        hits_dict = HMMER3.extract_dom_names_hits_from_domtblout(
            output_domtblout, output_pfam_annotated_dom_names)
        supported_ids = IdSet(hits_dict.keys())
        supported_ids.write(output_pfam_supported_transcripts_ids)
        remove_transcript_ids_str = "sed -re 's/\.t[0123456789]+//' %s | sort -k 1 | uniq > %s" % (
            output_pfam_supported_transcripts_ids,
            output_pfam_supported_genes_ids)
        os.system(remove_transcript_ids_str)

        print("Annotating peptides(Swissprot database)...")

        BLASTp.parallel_blastp(output_pep,
                               args.swissprot_db,
                               evalue=0.0000001,
                               output_format=6,
                               outfile=output_swissprot_blastp_hits,
                               split_dir="splited_blastp_fasta",
                               splited_output_dir="splited_blastp_output_dir")
        hits_dict = BLASTp.extract_hits_from_tbl_output(
            output_swissprot_blastp_hits, output_swissprot_blastp_hits_names)
        supported_ids = IdSet(hits_dict.keys())
        supported_ids.write(output_swissprot_supported_transcripts_ids)

        remove_transcript_ids_str = "sed -re 's/\.t[0123456789]+//' %s | sort -k 1 | uniq > %s" % (
            output_swissprot_supported_transcripts_ids,
            output_swissprot_supported_genes_ids)
        os.system(remove_transcript_ids_str)
        """
コード例 #16
0
    HMMER3.parallel_hmmscan(args.pfam_db,
                            output_pep,
                            output_hmmscan,
                            num_of_seqs_per_scan=None,
                            split_dir="splited_hmmscan_fasta/",
                            splited_output_dir="splited_hmmscan_output_dir",
                            tblout_outfile=None,
                            domtblout_outfile=output_domtblout,
                            pfamtblout_outfile=None,
                            splited_tblout_dir=None,
                            splited_domtblout_dir="hmmscan_domtblout/")
    HMMER3.extract_dom_ids_hits_from_domtblout(output_domtblout,
                                               output_pfam_annotated_dom_ids)
    hits_dict = HMMER3.extract_dom_names_hits_from_domtblout(
        output_domtblout, output_pfam_annotated_dom_names)
    supported_ids = IdSet(hits_dict.keys())
    supported_ids.write(output_pfam_supported_transcripts_ids)
    remove_transcript_ids_str = "sed -re 's/\.t[0123456789]+//' %s | sort -k 1 | uniq > %s" % (
        output_pfam_supported_transcripts_ids, output_pfam_supported_genes_ids)
    os.system(remove_transcript_ids_str)

if args.swissprot_db:
    print("Annotating peptides(Swissprot database)...")
    BLASTp.threads = args.threads
    BLASTp.parallel_blastp(output_pep,
                           args.swissprot_db,
                           evalue=0.0000001,
                           output_format=6,
                           outfile=output_swissprot_blastp_hits,
                           split_dir="splited_blastp_fasta",
                           splited_output_dir="splited_blastp_output_dir")
コード例 #17
0
    def convert_rm_out_to_gff(input_file, output_file,
                              annotated_repeat_classes_file,
                              annotated_repeat_families_file):
        repeat_classes_set = IdSet()
        repeat_families_set = IdSet()
        with open(input_file, "r") as in_fd:
            for i in range(0, 3):
                in_fd.readline()

            with open(output_file, "w") as out_fd:
                for line in in_fd:
                    tmp = line.strip().split()
                    strand = "+" if tmp[8] == "+" else "-"
                    repeat_class_family = tmp[10].split("/")
                    if len(repeat_class_family) == 1:
                        repeat_class_family.append(".")
                    repeat_classes_set.add(repeat_class_family[0])
                    repeat_families_set.add("/".join(repeat_class_family))
                    parameters = "Class=%s;Family=%s;Matching_repeat=%s;SW_score=%s;Perc_div=%s;Perc_del=%s;Pers_ins=%s" \
                                 % (repeat_class_family[0], repeat_class_family[1],
                                    tmp[9], tmp[0], tmp[1], tmp[2], tmp[3])
                    out_fd.write(
                        "%s\tRepeatMasker\trepeat\t%s\t%s\t.\t%s\t.\t%s\n" %
                        (tmp[4], tmp[5], tmp[6], strand, parameters))
        repeat_classes_set.write(annotated_repeat_classes_file)
        repeat_families_set.write(annotated_repeat_families_file)
コード例 #18
0
                    type=FileRoutines.make_list_of_path_to_files_from_string,
                    help="Comma-separated list of input files/directories with sequences")
parser.add_argument("-o", "--output_directory", action="store", dest="output", type=FileRoutines.check_path,
                    help="Directory to output groups_of sequences")
parser.add_argument("-f", "--format", action="store", dest="format", default="fasta",
                    help="Format of input and output files. Allowed formats genbank, fasta(default)")
parser.add_argument("-e", "--extension", action="store", dest="extension",
                    help="Extension of output files. Default: equal to -f")
parser.add_argument("-d", "--id_file", action="store", dest="id_file",
                    help="File with groups of sequences to extract(.fam file).")

args = parser.parse_args()

FileRoutines.safe_mkdir(args.output)
args.extension = args.extension if args.extension else args.format
tmp_index_file = "temp.idx"

#id_list = read_ids(args.id_file)
id_list = IdSet(filename=args.id_file)

sequence_groups_id = SynDict()
sequence_groups_id.read(args.id_file, split_values=True)
#print("Parsing %s..." % args.input_file)
sequence_dict = SeqIO.index_db(tmp_index_file, args.input, format=args.format)
for group in sequence_groups_id:
    SeqIO.write(SequenceRoutines.record_by_id_generator(sequence_dict, sequence_groups_id[group],
                                                        verbose=True),
                "%s%s.%s" % (args.output, group, args.extension), format=args.format)

os.remove(tmp_index_file)
コード例 #19
0
ファイル: get_cds_families.py プロジェクト: melakbet/MAVR
    accordance_file = "%s/%s.accordance" % (args.accordance_dir, species)
    accordance_dict[species] = SynDict()
    accordance_dict[species].read(accordance_file, key_index=1, value_index=0)


if args.name_first:
    def split_name(pep_name):
        gene_list = pep_name.split(args.name_separator)
        return gene_list[0], args.name_separator.join(gene_list[1:])
else:
    def split_name(pep_name):
        gene_list = pep_name.split(args.name_separator)
        return gene_list[-1], args.name_separator.join(gene_list[:-1])

families_with_errors = IdSet()
for family in pep_fam_dict:
    cds_fam_dict[family] = []
    for pep in pep_fam_dict[family]:
        species, pep_name = split_name(pep)
        if pep_name in accordance_dict[species]:
            cds_name = "%s%s%s" % (species, args.name_separator, accordance_dict[species][pep_name]) if args.name_first else \
                "%s%s%s" % (accordance_dict[species][pep_name], args.name_separator, species)
            cds_fam_dict[family].append(cds_name)
        else:
            print("%s %s %s doesn't have associated cds in accordance file" % (family, species, pep_name))
            families_with_errors.add(family)

for family in families_with_errors:
    cds_fam_dict.pop(family, None)