コード例 #1
0
ファイル: AE.py プロジェクト: disanda/PGGAN-TA
    def __init__(self, depth=7, latent_size=512, use_eql=True):
        """
        constructor for the Generator class
        :param depth: required depth of the Network
        :param latent_size: size of the latent manifold
        :param use_eql: whether to use equalized learning rate
        """
        super().__init__()
        assert latent_size != 0 and ((latent_size & (latent_size - 1))
                                     == 0), "latent size not a power of 2"
        if depth >= 4:
            assert latent_size >= np.power(
                2, depth - 4), "latent size will diminish to zero"

        # state of the generator:
        self.use_eql = use_eql
        self.depth = depth
        self.latent_size = latent_size

        self.fc = nn.Sequential(
            nn.Linear(512, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
        )

        # register the modules required for the GAN
        self.initial_block = GenInitialBlock(self.latent_size,
                                             use_eql=self.use_eql)

        # create a module list of the other required general convolution blocks
        self.layers = ModuleList([])  # initialize to empty list

        # create the ToRGB layers for various outputs:
        if self.use_eql:
            self.toRGB = lambda in_channels: _equalized_conv2d(
                in_channels, 3, (1, 1), bias=True)
        else:
            self.toRGB = lambda in_channels: Conv2d(
                in_channels, 3, (1, 1), bias=True)
        self.rgb_converters = ModuleList([self.toRGB(self.latent_size)])

        # create the remaining layers
        for i in range(self.depth - 1):
            if i <= 2:
                layer = GenGeneralConvBlock(self.latent_size,
                                            self.latent_size,
                                            use_eql=self.use_eql)
                rgb = self.toRGB(self.latent_size)
            else:
                layer = GenGeneralConvBlock(
                    int(self.latent_size // np.power(2, i - 3)),
                    int(self.latent_size // np.power(2, i - 2)),
                    use_eql=self.use_eql)
                rgb = self.toRGB(int(self.latent_size // np.power(2, i - 2)))
            self.layers.append(layer)
            self.rgb_converters.append(rgb)
        # register the temporary upsampler
        self.temporaryUpsampler = lambda x: interpolate(x, scale_factor=2)
コード例 #2
0
    def __init__(self, height=7, feature_size=512, use_eql=True):
        """
        constructor for the class
        :param height: total height of the discriminator (Must be equal to the Generator depth)
        :param feature_size: size of the deepest features extracted (Must be equal to Generator latent_size)
        :param use_eql: whether to use equalized learning rate
        """
        super().__init__()

        assert feature_size != 0 and ((feature_size & (feature_size - 1)) == 0), \
            "latent size not a power of 2"
        if height >= 4:
            assert feature_size >= np.power(
                2, height - 4), "feature size cannot be produced"

        # create state of the object
        self.use_eql = use_eql
        self.height = height
        self.feature_size = feature_size

        self.final_block = DisFinalBlock(self.feature_size,
                                         use_eql=self.use_eql)

        # create a module list of the other required general convolution blocks
        self.layers = ModuleList([])  # initialize to empty list

        # create the fromRGB layers for various inputs:
        if self.use_eql:
            from pro_gan_pytorch.CustomLayers import _equalized_conv2d
            self.fromRGB = lambda out_channels: _equalized_conv2d(
                3, out_channels, (1, 1), bias=True)
        else:
            from torch.nn import Conv2d
            self.fromRGB = lambda out_channels: Conv2d(
                3, out_channels, (1, 1), bias=True)

        self.rgb_to_features = ModuleList([self.fromRGB(self.feature_size)])

        # create the remaining layers
        for i in range(self.height - 1):
            if i > 2:
                layer = DisGeneralConvBlock(
                    int(self.feature_size // np.power(2, i - 2)),
                    int(self.feature_size // np.power(2, i - 3)),
                    use_eql=self.use_eql)
                rgb = self.fromRGB(int(self.feature_size //
                                       np.power(2, i - 2)))
            else:
                layer = DisGeneralConvBlock(self.feature_size,
                                            self.feature_size,
                                            use_eql=self.use_eql)
                rgb = self.fromRGB(self.feature_size)

            self.layers.append(layer)
            self.rgb_to_features.append(rgb)

        # register the temporary downSampler
        self.temporaryDownsampler = AvgPool2d(2)
コード例 #3
0
 def from_rgb(out_channels):
     return _equalized_conv2d(1, out_channels, (1, 1), bias=True)
コード例 #4
0
 def to_rgb(in_channels):
     return _equalized_conv2d(in_channels, 1, (1, 1), bias=True)