コード例 #1
0
class TestForMultipleHiddenLayers(unittest.TestCase):
    def setUp(self):
        self.patcher = patch('builtins.print')
        self.mock_object = self.patcher.start()
        self.x_test = np.array([[1], [0]])
        self.y_test = np.array([[1], [0]])
        self.hidden_node_biases = [0.10399593413625441, 0.9477095968224993]
        self.output_node_biases = [0.1683069001902736]
        self.weights = [
            0.08946817286422626, 0.10066428298027419, 0.8768683269443115
        ]
        self.net = NeuralNet(1,
                             4,
                             1,
                             1,
                             self.hidden_node_biases,
                             self.output_node_biases,
                             self.weights,
                             learning_rate=0.01)

    def tearDown(self):
        self.patcher.stop()

    def test_weights(self):
        self.assertEqual(self.net.get_weights(), self.weights)

    def test_biases(self):
        self.assertEqual(
            self.net.get_biases(),
            [0.10399593413625441, 0.9477095968224993, 0.1683069001902736])

    def test_partial_derivatives_for_biases(self):
        self.net.train(self.x_test, self.y_test, 1)
        self.assertEqual(
            self.net.get_biases(),
            [0.10397901969529151, 0.9470426291307198, 0.16445586456466701])

    def test_partial_derivatives_for_weights(self):
        self.net.train(self.x_test, self.y_test, 1)
        self.assertEqual(
            self.net.get_weights(),
            [0.08948139076478426, 0.10032526109304217, 0.8740529208576437])
コード例 #2
0
class TestForMultipleOutputs(unittest.TestCase):
    def setUp(self):
        self.patcher = patch('builtins.print')
        self.mock_object = self.patcher.start()
        self.x_test = np.array([[1, 0], [0, 1], [0, 0], [1, 1]])
        self.y_test = np.array([[0, 1], [0, 1], [1, 0], [1, 0]])
        self.hidden_node_biases = [2, 2]
        self.output_node_biases = [3, 3]
        self.weights = [5, 5, 5, 5, 5, 5, 5, 5]
        self.net = NeuralNet(2,
                             3,
                             2,
                             2,
                             self.hidden_node_biases,
                             self.output_node_biases,
                             self.weights,
                             activation_function=ActivationFunction.LOG,
                             learning_rate=0.01)

    def tearDown(self):
        self.patcher.stop()

    def test_weights(self):
        self.assertEqual(self.net.get_weights(), self.weights)

    def test_biases(self):
        self.assertEqual(self.net.get_biases(), [2, 2, 3, 3])

    def test_partial_derivatives_for_biases(self):
        self.net.train(self.x_test, self.y_test, 1)
        self.assertEqual(self.net.get_biases(), [
            2.000000000000002, 2.000000000000002, 3.0000000257168224,
            2.99999997428318
        ])

    def test_partial_derivatives_for_weights(self):
        self.net.train(self.x_test, self.y_test, 1)
        self.assertEqual(self.net.get_weights(), [
            5.0, 5.0, 5.0, 5.0, 5.000000021300251, 4.999999978699751,
            5.000000021300251, 4.999999978699751
        ])