import Utils.Renders as rd # NOQA from DA import Prodotti from Utils import Clust # NOQA from Utils import Constants from Utils.ClAnalyzer import ClAnalyzer from IPython import embed # }}} sns.set() sns.set_palette(Constants.abc_l) # plt.ion() # {{{ Preparazione Dataset df = Prodotti.get_df_group_prod(include_rare=True) df_scaled = Prodotti.get_df_group_prod_proc(include_rare=True) CA = ClAnalyzer(df) CA.add_df(df_scaled, 'scaled') feats = ['nAvSess', 'Recency', 'nUsers', 'Ratio', 'UserRatio'] feats3 = ['Recency', 'nUsers', 'Ratio'] CA.features = feats # 1: molto consigliato # 2: consigliato a nord # 3: consigliato correttamente e numeroso # samples = ['P0011AN', 'P0018AN', 'P0080AB'] samples = ['P0011AN'] CA.set_samples(samples, 'ProductId') CA.print_relevance(df_name='scaled') if 0: CA.print_outliers()
import matplotlib.pyplot as plt from scipy.spatial.distance import pdist, squareform from sklearn.cluster import DBSCAN, KMeans from sklearn.neighbors import NearestNeighbors from sklearn.decomposition import PCA import Utils.Renders as rd # NOQA import pandas as pd from DA import Prodotti from Utils import Clust # NOQA from Utils.ClAnalyzer import ClAnalyzer from IPython import embed # }}} # {{{ Preparazione Dataset prod = Prodotti.get_df_group_prod() prod_proc = Prodotti.get_df_group_prod_proc() CA = ClAnalyzer(prod) CA.add_df(prod_proc, 'scaled') feats = ['nAvSess', 'Recency', 'nUsers', 'Ratio', 'UserRatio'] feats3 = ['Recency', 'nUsers', 'Ratio'] CA.features = feats CA.print_relevance(df_name='scaled') # 1: molto consigliato # 2: consigliato a nord # 3: consigliato correttamente e numeroso samples = ['P0011AN', 'P0018AN', 'P0080AB'] CA.set_samples(samples, 'ProductId') if 0: CA.print_outliers()