def build_model(self): self.model = DBPN(num_channels=1, base_channels=64, feat_channels=256, num_stages=7, scale_factor=self.upscale_factor).to(self.device) self.model.weight_init() self.criterion = nn.L1Loss() torch.manual_seed(self.seed) if self.GPU_IN_USE: torch.cuda.manual_seed(self.seed) cudnn.benchmark = True self.criterion.cuda() self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr) self.scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=[50, 75, 100], gamma=0.5) # lr decay
def build_model(self): self.model = DBPN(num_channels=1, base_channels=64, feat_channels=256, num_stages=7, scale_factor=self.upscale_factor).to(self.device) self.model.weight_init() self.criterion = nn.L1Loss() torch.manual_seed(self.seed) if self.GPU_IN_USE: torch.cuda.manual_seed(self.seed) cudnn.benchmark = True self.criterion.cuda() self.set_optimizer()