コード例 #1
0
ファイル: IDEC.py プロジェクト: epideep/source
    def __init__(self, dims, n_clusters=4, alpha=1.0):

        super(IDEC, self).__init__()

        self.dims = dims
        self.input_dim = dims[0]
        self.n_stacks = len(self.dims) - 1

        self.n_clusters = n_clusters
        self.alpha = alpha
        self.autoencoder = autoencoder(self.dims)
        hidden = self.autoencoder.get_layer(name='encoder_%d' %
                                            (self.n_stacks - 1)).output
        self.encoder = Model(inputs=self.autoencoder.input, outputs=hidden)

        # prepare IDEC model
        clustering_layer = ClusteringLayer(self.n_clusters,
                                           alpha=self.alpha,
                                           name='clustering')(hidden)
        self.model = Model(inputs=self.autoencoder.input,
                           outputs=[clustering_layer, self.autoencoder.output])

        self.pretrained = False
        self.centers = []
        self.y_pred = []
コード例 #2
0
    def __init__(self, dims, n_clusters=10, alpha=1.0, batch_size=256):

        super(IDEC, self).__init__()

        self.dims = dims
        self.input_dim = dims[0]
        self.n_stacks = len(self.dims) - 1

        self.n_clusters = n_clusters
        self.alpha = alpha
        self.batch_size = batch_size
        self.autoencoder = autoencoder(self.dims)
コード例 #3
0
ファイル: new_IDEC.py プロジェクト: klovbe/DEC-keras
    def __init__(self,
                 dims,
                 gamma=0.1,
                 n_clusters=10,
                 alpha=1.0,
                 init='glorot_uniform'):

        # super(IDEC,self).__init__(dims,
        #          n_clusters=10,
        #          alpha=1.0,
        #          init='glorot_uniform')
        self.dims = dims
        self.input_dim = dims[0]
        self.n_stacks = len(self.dims) - 1

        self.n_clusters = n_clusters
        self.alpha = alpha
        self.autoencoder, self.encoder = autoencoder(self.dims, init=init)

        # prepare DEC model
        clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(
            self.encoder.output)
        self.model = Model(inputs=self.autoencoder.input,
                           outputs=[clustering_layer, self.autoencoder.output])