コード例 #1
0
ファイル: FVVM.py プロジェクト: humeniuka/DFTBaby
def test():
    # bond length in bohr
    dist = 2.0
    # positions of protons
    posH1 = (0.0, 0.0, -dist / 2.0)
    posH2 = (0.0, 0.0, +dist / 2.0)

    atomlist = [(1, posH1), (1, posH2)]

    # Set resolution of multicenter grid
    settings.radial_grid_factor = 20
    settings.lebedev_order = 23

    # energy of continuum orbital
    E = 1.0

    # same functional as used in the calculation of pseudo orbitals
    xc = XCFunctionals.libXCFunctional(Parameters.pseudo_orbital_x,
                                       Parameters.pseudo_orbital_c)
    dft = BasissetFreeDFT(atomlist, xc)

    print "initial orbital guess from DFTB calculation"
    orbitals = dft.getOrbitalGuess()

    norb = len(orbitals)
    # all orbitals are doubly occupied
    nelec = 2 * norb

    bound_orbitals = dft.getOrbitalGuess()

    # effective potential
    rho = density_func(bound_orbitals)
    veff = effective_potential_func(atomlist, rho, xc, nelec=nelec)

    # radius that separates inner from outer region
    r0 = vdw_sphere_radius(atomlist, fac=2.0)
    # basis sets
    bs_core = AtomicBasisSet(atomlist, orbital_set="core")
    bs_valence = AtomicBasisSet(atomlist, orbital_set="valence")
    bs_continuum = AtomicScatteringBasisSet(atomlist, E, lmax=1)
    # combine basis functions from all basis sets
    bfs = bs_core.bfs + bs_valence.bfs + bs_continuum.bfs

    A, D, S = fvvm_matrix_elements(atomlist, bfs, veff, E, r0)

    # solve generalized eigenvalue problem
    #   A.C = b.D.C
    b, C = sla.eigh(A, D)

    return b, C
コード例 #2
0
def test_h2_continuum_orbital():
    """
    The sigma continuum orbital is approximated as a linear
    combination of two s continuum orbitals and is then
    improved iteratively
    """
    # bond length in bohr
    dist = 2.0
    # positions of protons
    posH1 = (0.0, 0.0, -dist / 2.0)
    posH2 = (0.0, 0.0, +dist / 2.0)

    atomlist = [(1, posH1), (1, posH2)]

    # Set resolution of multicenter grid
    settings.radial_grid_factor = 20
    settings.lebedev_order = 23

    # energy of continuum orbital
    E = 1.0

    # same functional as used in the calculation of pseudo orbitals
    xc = XCFunctionals.libXCFunctional(Parameters.pseudo_orbital_x,
                                       Parameters.pseudo_orbital_c)
    dft = BasissetFreeDFT(atomlist, xc)

    print("initial orbital guess from DFTB calculation")
    orbitals = dft.getOrbitalGuess()

    norb = len(orbitals)
    # all orbitals are doubly occupied
    nelec = 2 * norb

    bound_orbitals = dft.getOrbitalGuess()

    # electron density (closed shell)
    rho = density_func(bound_orbitals)
    # effective Kohn-Sham potential
    veff = effective_potential_func(atomlist,
                                    rho,
                                    xc,
                                    nelec=nelec,
                                    nuclear=True)
    # effective Kohn-Sham potential without nuclear attraction
    # (only electron-electron interaction)
    veff_ee = effective_potential_func(atomlist,
                                       rho,
                                       xc,
                                       nelec=nelec,
                                       nuclear=False)

    ps = AtomicPotentialSet(atomlist)

    lmax = 0
    bs = AtomicScatteringBasisSet(atomlist, E, lmax=lmax)

    #test_AO_basis(atomlist, bs, ps, E)

    R = residual2_matrix(atomlist, veff, ps, bs)
    S = continuum_overlap(bs.bfs, E)
    print("continuum overlap")
    print(S)
    print("residual^2 matrix")
    print(R)

    eigvals, eigvecs = sla.eigh(R, S)
    print(eigvals)
    print("eigenvector belonging to lowest eigenvalue")
    print(eigvecs[:, 0])

    # LCAO continuum orbitals
    continuum_orbitals = orbital_transformation(atomlist, bs.bfs, eigvecs)

    # improve continuum orbital by adding a correction term
    #
    #    phi = phi0 + dphi
    #
    # The orbital correction dphi is the solution of the inhomogeneous
    # Schroedinger equation
    #
    #   (H-E)dphi = -(H-E)phi0
    #
    print("orbital correction...")
    phi0 = continuum_orbitals[0]

    phi = improve_continuum_orbital(atomlist, phi0, veff_ee, E)
コード例 #3
0
def test_lcao_continuum():
    import matplotlib.pyplot as plt

    # bond length in bohr
    dist = 2.0
    # positions of protons
    posH1 = (0.0, 0.0, -dist / 2.0)
    posH2 = (0.0, 0.0, +dist / 2.0)

    atomlist = [(1, posH1), (1, posH2)]

    # Set resolution of multicenter grid
    settings.radial_grid_factor = 20
    settings.lebedev_order = 23

    # energy of continuum orbital
    E = 1.0

    # same functional as used in the calculation of pseudo orbitals
    xc = XCFunctionals.libXCFunctional(Parameters.pseudo_orbital_x,
                                       Parameters.pseudo_orbital_c)
    dft = BasissetFreeDFT(atomlist, xc)

    print("initial orbital guess from DFTB calculation")
    orbitals = dft.getOrbitalGuess()

    norb = len(orbitals)
    # all orbitals are doubly occupied
    nelec = 2 * norb

    bound_orbitals = dft.getOrbitalGuess()

    # effective potential
    rho = density_func(bound_orbitals)
    veff = effective_potential_func(atomlist, rho, xc, nelec=nelec)

    ps = AtomicPotentialSet(atomlist)

    r = np.linspace(-15.0, 15.0, 10000)
    x = 0.0 * r
    y = 0.0 * r
    z = r

    for lmax in [0, 1, 2, 3]:
        bs = AtomicScatteringBasisSet(atomlist, E, lmax=lmax)

        #test_AO_basis(atomlist, bs, ps, E)

        R = residual2_matrix(atomlist, veff, ps, bs)
        S = continuum_overlap(bs.bfs, E)
        print("continuum overlap")
        print(S)
        print("residual^2 matrix")
        print(R)

        eigvals, eigvecs = sla.eigh(R, S)
        print(eigvals)
        print("eigenvector belonging to lowest eigenvalue")
        print(eigvecs[:, 0])

        # LCAO continuum orbitals
        continuum_orbitals = orbital_transformation(atomlist, bs.bfs, eigvecs)

        # improve continuum orbital by adding a correction term
        #
        #    phi = phi0 + dphi
        #
        # The orbital correction dphi is the solution of the inhomogeneous
        # Schroedinger equation
        #
        #   (H-E)dphi = -(H-E)phi0
        #
        print("orbital correction...")
        phi0 = continuum_orbitals[0]

        phi = improve_continuum_orbital(atomlist, phi0, veff, E)
        exit(-1)

        residual_0 = residual_func(atomlist, phi0, veff, E)

        def source(x, y, z):
            return -residual_0(x, y, z)

        delta_phi = inhomogeneous_schroedinger(atomlist, veff, source, E)
        residual_d = residual_func(atomlist, delta_phi, veff, E)

        a, b = variational_mixture_continuum(atomlist, phi0, delta_phi, veff,
                                             E)

        phi = add_two_functions(atomlist, phi0, delta_phi, a, b)
        residual = residual_func(atomlist, phi, veff, E)

        plt.plot(r, 1.0 / np.sqrt(2.0) * bs.bfs[0](x, y, z), label=r"AO")
        plt.plot(r, phi0(x, y, z), label=r"$\phi_0$")
        plt.plot(r, delta_phi(x, y, z), label=r"$\Delta \phi$")
        plt.plot(r, phi(x, y, z), label=r"$\phi_0 + \Delta \phi$")
        plt.legend()
        plt.show()
        """
        dphi = delta_phi(x,y,z)
        imin = np.argmin(abs(r-1.0))
        dphi[abs(r) < 1.0] = dphi[imin] - (dphi[abs(r) < 1.0] - dphi[imin])
        plt.plot(r, dphi, label=r"$\Delta \phi$")
        """
        plt.plot(r, residual_0(x, y, z), label=r"$(H-E) \phi_0$")
        plt.plot(r, residual_d(x, y, z), label=r"$(H-E)\Delta \phi$")
        plt.plot(r,
                 residual(x, y, z),
                 label=r"$(H-E)(a \phi_0 + b \Delta \phi)$")
        plt.plot(r,
                 a * residual_0(x, y, z) + b * residual_d(x, y, z),
                 ls="-.",
                 label=r"$(H-E)(a \phi_0 + b \Delta \phi)$ (separate)")

        plt.legend()
        plt.show()

        averaged_angular_distribution(atomlist, bound_orbitals,
                                      continuum_orbitals, E)

        # save continuum MOs to cubefiles
        for i, phi in enumerate(continuum_orbitals):

            def func(grid, dV):
                x, y, z = grid
                return phi(x, y, z)

            Cube.function_to_cubefile(
                atomlist,
                func,
                filename="/tmp/cmo_lmax_%2.2d_orb%4.4d.cube" % (lmax, i),
                ppb=5.0)
        #

        for i, phi in enumerate(continuum_orbitals):
            residual = residual_func(atomlist, phi, veff, E)
            delta_e = energy_correction(atomlist,
                                        residual,
                                        phi,
                                        method="Becke")
            print(" orbital %d   energy <%d|H-E|%d> = %e" % (i, i, i, delta_e))

            l, = plt.plot(r,
                          phi(x, y, z),
                          label=r"$\phi_{%d}$ ($l_{max}$ = %d)" % (i, lmax))
            plt.plot(r,
                     residual(x, y, z),
                     ls="-.",
                     label=r"$(H-E)\phi_{%d}$" % i,
                     color=l.get_color())

        plt.legend()
        plt.show()
コード例 #4
0
from DFTB.SlaterKoster import XCFunctionals

import numpy as np
import matplotlib.pyplot as plt

if __name__ == "__main__":
    # Li^+ atom
    atomlist = [(3, (0.0, 0.0, 0.0))]
    charge = +1

    # choose resolution of multicenter grids for bound orbitals
    settings.radial_grid_factor = 20  # controls size of radial grid
    settings.lebedev_order = 25  # controls size of angular grid
    # 1s core orbitals for Li+^ atom
    RDFT = BasissetFreeDFT(atomlist, None, charge=charge)
    bound_orbitals = RDFT.getOrbitalGuess()

    print("electron density...")
    # electron density of two electrons in the 1s core orbital
    rho = density_func(bound_orbitals)
    print("effective potential...")

    # List of (exchange, correlation) functionals implemented
    # in libXC
    functionals = [
        ("lda_x", "lda_c_xalpha"),
        ("lda_x_erf", "lda_c_xalpha"),
        ("lda_x_rae", "lda_c_xalpha"),
        ("gga_x_lb", "lda_c_xalpha"),
    ]