def random_centered_test(x, y): def condition(DNA): return max_layer(DNA, 15) center = ((-1, 1, 3, x, y), (0, 3, 5, x, y), (1, 5, 2), (2, ), (3, -1, 0), (3, 0, 1), (3, 1, 2)) version = 'final' space = space = DNA_Graph(center, 1, (x, y), condition, ((0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0), (1, 0, 0, 0)), version) center = space.center node_c = space.graph.key2node.get(center) Funct.set_num_particles(node_c.kids[0], 10) print(f'the center is {center}') Selector = Cen_rand_select() k = 10 while k > 0: Selector.update(space) Selector.print_observation() print(Selector.get_predicted_actions()) k = k - 1 actions = Selector.get_predicted_actions() space = space = DNA_Graph(center, 1, (x, y), condition, actions, version, Creator_s) space.imprimir()
def linear_filter(x, y): ks = [2] center = ((0, 3, ks[0], x, y), (1, ks[0], 2), (2, )) space = DNA_Graph(center, 5, (x, y)) print('linear_filter: done') space.imprimir() print(space.type) return space
def add_filter_i(x, y): def condition(DNA): return max_layer(DNA, 10) center = ((0, 3, 4, 2, 2), (0, 7, 4, x, y), (1, 4, 2), (2, )) space = DNA_Graph(center, 2, (x, y), condition, (0, (0, 1, 0, 0))) space.imprimir() #print(space.key2node(center)) return space
def linear_kernel_width(x, y): ks = [2] center = ((0, 3, int(2 * ks[0]), 2, 2), (0, int(2 * ks[0]), ks[0], x - 1, y - 1), (1, ks[0], 2), (2, )) print('linear_kernel_width: done') space = DNA_Graph(center, 5, (x, y), (0, (0, 1, 0, 0))) print(space.type) space.imprimir() #print(space.key2node(center)) return space
def linear_kernel_depth(x, y): def condition(DNA): return max_layer(DNA, 10) center = ((0, 3, 10, 1, 3, 3), (0, 1, 20, 3, 3, 3), (0, 1, 20, 160, 7, 7), (1, 20, 2), (2, )) print('linear_kernel_depth: done') space = DNA_Graph(center, 5, (x, y), condition, (0, (0, 0, 1, 1))) space.imprimir() print(space.length()) return space
def kernel_height_creator(x, y): def condition(DNA): return max_layer(DNA, 10) creator = Creator(((0, 1, 0, 0), (0, 0, 1, 1)), condition) center = ((0, 3, 4, 2, 2), (0, 4, 5, x - 1, y - 1), (1, 5, 2), (2, )) space = space = DNA_Graph(center, 20, (x, y), condition, (0, (0, 0, 1, 1))) print('linear_filter: done') space.imprimir() print(space.length())
def DNA_Creator_s(x, y): def condition(DNA): output = True if DNA: for num_layer in range(0, len(DNA) - 3): layer = DNA[num_layer] x_l = layer[3] y_l = layer[4] output = output and (x_l < x) and (y_l < y) if output: return max_layer(DNA, 3) center = ((0, 3, 5, 3, 3), (0, 8, 8, 3, 3), (0, 11, 5, x, y), (1, 5, 2), (2, )) version = 'inclusion' space = DNA_Graph(center, 2, (x, y), condition, ((0, (0, 0, 1, 1)), (1, (0, 1, 0, 0))), version, Creator_s) space.imprimir() print(space.length())
def DNA_test_f(x, y): def condition(DNA): return max_layer(DNA, 15) center = ((-1, 1, 3, x, y), (0, 3, 5, 3, 3), (0, 5, 5, x - 2, y - 2), (1, 5, 2), (2, ), (3, -1, 0), (3, 0, 1), (3, 1, 2), (3, 2, 3)) version = 'final' space = space = DNA_Graph(center, 2, (x, y), condition, ((0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0), (1, 0, 0, 0)), version) space.imprimir() print(space.length())
def initialize(): S = 100 Comp = 2 dataGen = GeneratorFromImage.GeneratorFromImage(Comp, S, cuda=False) dataGen.dataConv2d() x = dataGen.size[1] y = dataGen.size[2] ks = [2] def condition(DNA): return max_layer(DNA, 10) center = ((0, 3, ks[0], x, y), (1, ks[0], 2), (2, )) space = DNA_Graph(center, 10, (x, y), condition, (0, (1, 1, 0, 0))) Phase_space = DNA_Phase_space(space) return Phase_space
def kernel_increase_i(x, y): def condition(DNA): output = True if DNA: for num_layer in range(0, len(DNA) - 3): layer = DNA[num_layer] x_l = layer[3] y_l = layer[4] output = output and (x_l < x) and (y_l < y) if output: return max_layer(DNA, 10) center = ((0, 3, 5, 3, 3), (0, 3, 8, 3, 3), (0, 7, 5, x, y), (1, 5, 2), (2, )) version = 'inclusion' space = space = DNA_Graph(center, 4, (x, y), condition, (0, (0, 0, 1, 1)), version) space.imprimir() print(space.length())