def __init__(self, in_policy_file, out_policy_file, domainString='CamRestaurants', is_training=False): super(BDQNPolicy, self).__init__(domainString, is_training) tf.reset_default_graph() self.domainString = domainString self.domainUtil = FlatOnt.FlatDomainOntology(self.domainString) self.in_policy_file = in_policy_file self.out_policy_file = out_policy_file self.is_training = is_training self.accum_belief = [] self.domainUtil = FlatOnt.FlatDomainOntology(self.domainString) self.prev_state_check = None # parameter settings self.n_in = 260 if cfg.has_option('dqnpolicy', 'n_in'): self.n_in = cfg.getint('dqnpolicy', 'n_in') self.actor_lr = 0.0001 if cfg.has_option('dqnpolicy', 'actor_lr'): self.actor_lr = cfg.getfloat('dqnpolicy', 'actor_lr') self.critic_lr = 0.001 if cfg.has_option('dqnpolicy', 'critic_lr'): self.critic_lr = cfg.getfloat('dqnpolicy', 'critic_lr') self.tau = 0.001 if cfg.has_option('dqnpolicy', 'tau'): self.tau = cfg.getfloat('dqnpolicy', 'tau') self.randomseed = 1234 if cfg.has_option('GENERAL', 'seed'): self.randomseed = cfg.getint('GENERAL', 'seed') self.gamma = 1.0 if cfg.has_option('dqnpolicy', 'gamma'): self.gamma = cfg.getfloat('dqnpolicy', 'gamma') self.regularisation = 'l2' if cfg.has_option('dqnpolicy', 'regularisation'): self.regularisation = cfg.get('dqnpolicy', 'regulariser') self.learning_rate = 0.001 # ct506 #0.001 if cfg.has_option('dqnpolicy', 'learning_rate'): self.learning_rate = cfg.getfloat('dqnpolicy', 'learning_rate') self.exploration_type = 'e-greedy' # Boltzman if cfg.has_option('dqnpolicy', 'exploration_type'): self.exploration_type = cfg.get('dqnpolicy', 'exploration_type') self.episodeNum = 1000 if cfg.has_option('dqnpolicy', 'episodeNum'): self.episodeNum = cfg.getfloat('dqnpolicy', 'episodeNum') self.maxiter = 5000 if cfg.has_option('dqnpolicy', 'maxiter'): self.maxiter = cfg.getfloat('dqnpolicy', 'maxiter') self.epsilon = 1 if cfg.has_option('dqnpolicy', 'epsilon'): self.epsilon = cfg.getfloat('dqnpolicy', 'epsilon') self.epsilon_start = 1 if cfg.has_option('dqnpolicy', 'epsilon_start'): self.epsilon_start = cfg.getfloat('dqnpolicy', 'epsilon_start') self.epsilon_end = 1 if cfg.has_option('dqnpolicy', 'epsilon_end'): self.epsilon_end = cfg.getfloat('dqnpolicy', 'epsilon_end') self.priorProbStart = 1.0 if cfg.has_option('dqnpolicy', 'prior_sample_prob_start'): self.priorProbStart = cfg.getfloat('dqnpolicy', 'prior_sample_prob_start') self.priorProbEnd = 0.1 if cfg.has_option('dqnpolicy', 'prior_sample_prob_end'): self.priorProbEnd = cfg.getfloat('dqnpolicy', 'prior_sample_prob_end') self.policyfeatures = [] if cfg.has_option('dqnpolicy', 'features'): logger.info('Features: ' + str(cfg.get('dqnpolicy', 'features'))) self.policyfeatures = json.loads(cfg.get('dqnpolicy', 'features')) self.max_k = 5 if cfg.has_option('dqnpolicy', 'max_k'): self.max_k = cfg.getint('dqnpolicy', 'max_k') self.learning_algorithm = 'drl' if cfg.has_option('dqnpolicy', 'learning_algorithm'): self.learning_algorithm = cfg.get('dqnpolicy', 'learning_algorithm') logger.info('Learning algorithm: ' + self.learning_algorithm) self.minibatch_size = 32 if cfg.has_option('dqnpolicy', 'minibatch_size'): self.minibatch_size = cfg.getint('dqnpolicy', 'minibatch_size') self.capacity = 1000 # max(self.minibatch_size, 2000) if cfg.has_option('dqnpolicy', 'capacity'): self.capacity = max(cfg.getint('dqnpolicy', 'capacity'), 2000) self.replay_type = 'vanilla' if cfg.has_option('dqnpolicy', 'replay_type'): self.replay_type = cfg.get('dqnpolicy', 'replay_type') self.architecture = 'vanilla' if cfg.has_option('dqnpolicy', 'architecture'): self.architecture = cfg.get('dqnpolicy', 'architecture') self.q_update = 'single' if cfg.has_option('dqnpolicy', 'q_update'): self.q_update = cfg.get('dqnpolicy', 'q_update') self.h1_size = 130 if cfg.has_option('dqnpolicy', 'h1_size'): self.h1_size = cfg.getint('dqnpolicy', 'h1_size') self.h2_size = 130 if cfg.has_option('dqnpolicy', 'h2_size'): self.h2_size = cfg.getint('dqnpolicy', 'h2_size') self.save_step = 200 if cfg.has_option('policy', 'save_step'): self.save_step = cfg.getint('policy', 'save_step') # BDQN parameteres self.n_samples = 1 if cfg.has_option('dqnpolicy', 'n_samples'): self.n_samples = cfg.getint('dqnpolicy', 'n_samples') sigma_prior = 1.5 # np.array(-3.0, dtype=np.float32) if cfg.has_option('dqnpolicy', 'sigma_prior'): sigma_prior = cfg.getfloat('dqnpolicy', 'sigma_prior') self.sigma_prior = tf.exp(sigma_prior) # np.exp(np.array(sigma_prior, dtype=np.float32)) self.stddev_var_mu = 0.01 if cfg.has_option('dqnpolicy', 'stddev_var_mu'): self.stddev_var_mu = cfg.getfloat('dqnpolicy', 'stddev_var_mu') self.stddev_var_logsigma = 0.01 if cfg.has_option('dqnpolicy', 'stddev_var_logsigma'): self.stddev_var_logsigma = cfg.getfloat('dqnpolicy', 'stddev_var_logsigma') self.mean_log_sigma = 0.000001 if cfg.has_option('dqnpolicy', 'mean_log_sigma'): self.mean_log_sigma = cfg.getfloat('dqnpolicy', 'mean_log_sigma') self.n_batches = 1000.0 if cfg.has_option('dqnpolicy', 'n_batches'): self.n_batches = cfg.getfloat('dqnpolicy', 'n_batches') self.importance_sampling = False if cfg.has_option('dqnpolicy', 'importance_sampling'): self.importance_sampling = cfg.getboolean('dqnpolicy', 'importance_sampling') self.alpha = 0.85 if cfg.has_option('dqnpolicy', 'alpha'): self.alpha = cfg.getfloat('dqnpolicy', 'alpha') self.alpha_divergence = False if cfg.has_option('dqnpolicy', 'alpha_divergence'): self.alpha_divergence = cfg.getboolean('dqnpolicy', 'alpha_divergence') self.sigma_eps = 0.01 if cfg.has_option('dqnpolicy', 'sigma_eps'): self.sigma_eps = cfg.getfloat('dqnpolicy', 'sigma_eps') self.training_frequency = 2 if cfg.has_option('dqnpolicy', 'training_frequency'): self.training_frequency = cfg.getint('dqnpolicy', 'training_frequency') # domain specific parameter settings (overrides general policy parameter settings) if cfg.has_option('dqnpolicy_' + domainString, 'n_in'): self.n_in = cfg.getint('dqnpolicy_' + domainString, 'n_in') if cfg.has_option('dqnpolicy_' + domainString, 'actor_lr'): self.actor_lr = cfg.getfloat('dqnpolicy_' + domainString, 'actor_lr') if cfg.has_option('dqnpolicy_' + domainString, 'critic_lr'): self.critic_lr = cfg.getfloat('dqnpolicy_' + domainString, 'critic_lr') if cfg.has_option('dqnpolicy_' + domainString, 'tau'): self.tau = cfg.getfloat('dqnpolicy_' + domainString, 'tau') if cfg.has_option('dqnpolicy_' + domainString, 'gamma'): self.gamma = cfg.getfloat('dqnpolicy_' + domainString, 'gamma') if cfg.has_option('dqnpolicy_' + domainString, 'regularisation'): self.regularisation = cfg.get('dqnpolicy_' + domainString, 'regulariser') if cfg.has_option('dqnpolicy_' + domainString, 'learning_rate'): self.learning_rate = cfg.getfloat('dqnpolicy_' + domainString, 'learning_rate') if cfg.has_option('dqnpolicy_' + domainString, 'exploration_type'): self.exploration_type = cfg.get('dqnpolicy_' + domainString, 'exploration_type') if cfg.has_option('dqnpolicy_' + domainString, 'episodeNum'): self.episodeNum = cfg.getfloat('dqnpolicy_' + domainString, 'episodeNum') if cfg.has_option('dqnpolicy_' + domainString, 'maxiter'): self.maxiter = cfg.getfloat('dqnpolicy_' + domainString, 'maxiter') if cfg.has_option('dqnpolicy_' + domainString, 'epsilon'): self.epsilon = cfg.getfloat('dqnpolicy_' + domainString, 'epsilon') if cfg.has_option('dqnpolicy_' + domainString, 'epsilon_start'): self.epsilon_start = cfg.getfloat('dqnpolicy_' + domainString, 'epsilon_start') if cfg.has_option('dqnpolicy_' + domainString, 'epsilon_end'): self.epsilon_end = cfg.getfloat('dqnpolicy_' + domainString, 'epsilon_end') if cfg.has_option('dqnpolicy_' + domainString, 'prior_sample_prob_start'): self.priorProbStart = cfg.getfloat('dqnpolicy_' + domainString, 'prior_sample_prob_start') if cfg.has_option('dqnpolicy_' + domainString, 'prior_sample_prob_end'): self.priorProbEnd = cfg.getfloat('dqnpolicy_' + domainString, 'prior_sample_prob_end') if cfg.has_option('dqnpolicy_' + domainString, 'features'): logger.info('Features: ' + str(cfg.get('dqnpolicy_' + domainString, 'features'))) self.policyfeatures = json.loads(cfg.get('dqnpolicy_' + domainString, 'features')) if cfg.has_option('dqnpolicy_' + domainString, 'max_k'): self.max_k = cfg.getint('dqnpolicy_' + domainString, 'max_k') if cfg.has_option('dqnpolicy_' + domainString, 'learning_algorithm'): self.learning_algorithm = cfg.get('dqnpolicy_' + domainString, 'learning_algorithm') logger.info('Learning algorithm: ' + self.learning_algorithm) if cfg.has_option('dqnpolicy_' + domainString, 'minibatch_size'): self.minibatch_size = cfg.getint('dqnpolicy_' + domainString, 'minibatch_size') if cfg.has_option('dqnpolicy_' + domainString, 'capacity'): self.capacity = cfg.getint('dqnpolicy_' + domainString, 'capacity') if cfg.has_option('dqnpolicy_' + domainString, 'replay_type'): self.replay_type = cfg.get('dqnpolicy_' + domainString, 'replay_type') if cfg.has_option('dqnpolicy_' + domainString, 'architecture'): self.architecture = cfg.get('dqnpolicy_' + domainString, 'architecture') if cfg.has_option('dqnpolicy_' + domainString, 'q_update'): self.q_update = cfg.get('dqnpolicy_' + domainString, 'q_update') if cfg.has_option('dqnpolicy_' + domainString, 'h1_size'): self.h1_size = cfg.getint('dqnpolicy_' + domainString, 'h1_size') if cfg.has_option('dqnpolicy_' + domainString, 'h2_size'): self.h2_size = cfg.getint('dqnpolicy_' + domainString, 'h2_size') if cfg.has_option('policy_' + domainString, 'save_step'): self.save_step = cfg.getint('policy_' + domainString, 'save_step') # BDQN parameteres if cfg.has_option('dqnpolicy_' + domainString, 'n_samples'): self.n_samples = cfg.getint('dqnpolicy_' + domainString, 'n_samples') if cfg.has_option('dqnpolicy_' + domainString, 'sigma_prior'): sigma_prior = cfg.getfloat('dqnpolicy_' + domainString, 'sigma_prior') self.sigma_prior = tf.exp(sigma_prior) # np.exp(np.array(sigma_prior, dtype=np.float32)) if cfg.has_option('dqnpolicy_' + domainString, 'stddev_var_mu'): self.stddev_var_mu = cfg.getfloat('dqnpolicy_' + domainString, 'stddev_var_mu') if cfg.has_option('dqnpolicy_' + domainString, 'stddev_var_logsigma'): self.stddev_var_logsigma = cfg.getfloat('dqnpolicy_' + domainString, 'stddev_var_logsigma') if cfg.has_option('dqnpolicy_' + domainString, 'mean_log_sigma'): self.mean_log_sigma = cfg.getfloat('dqnpolicy_' + domainString, 'mean_log_sigma') if cfg.has_option('dqnpolicy_' + domainString, 'n_batches'): self.n_batches = cfg.getfloat('dqnpolicy_' + domainString, 'n_batches') if cfg.has_option('dqnpolicy_' + domainString, 'importance_sampling'): self.importance_sampling = cfg.getboolean('dqnpolicy_' + domainString, 'importance_sampling') if cfg.has_option('dqnpolicy_' + domainString, 'alpha'): self.alpha = cfg.getfloat('dqnpolicy_' + domainString, 'alpha') if cfg.has_option('dqnpolicy_' + domainString, 'alpha_divergence'): self.alpha_divergence = cfg.getboolean('dqnpolicy_' + domainString, 'alpha_divergence') if cfg.has_option('dqnpolicy_' + domainString, 'sigma_eps'): self.sigma_eps = cfg.getfloat('dqnpolicy_' + domainString, 'sigma_eps') if cfg.has_option('dqnpolicy_' + domainString, 'training_frequency'): self.training_frequency = cfg.getint('dqnpolicy_' + domainString, 'training_frequency') print 'ct506', 'sigma_eps', self.sigma_eps, 'lr', self.learning_rate, 'm', self.n_batches self.episode_ave_max_q = [] os.environ["CUDA_VISIBLE_DEVICES"] = "" # init session self.sess = tf.Session() with tf.device("/cpu:0"): np.random.seed(self.randomseed) tf.set_random_seed(self.randomseed) # initialise an replay buffer if self.replay_type == 'vanilla': self.episodes[self.domainString] = ReplayBuffer(self.capacity, self.minibatch_size, self.randomseed) elif self.replay_type == 'prioritized': self.episodes[self.domainString] = ReplayPrioritised(self.capacity, self.minibatch_size, self.randomseed) # replay_buffer = ReplayBuffer(self.capacity, self.randomseed) # self.episodes = [] self.samplecount = 0 self.episodecount = 0 # construct the models self.state_dim = self.n_in self.summaryaction = SummaryAction.SummaryAction(domainString) self.action_dim = len(self.summaryaction.action_names) action_bound = len(self.summaryaction.action_names) self.stats = [0 for _ in range(self.action_dim)] self.stdVar = [] self.meanVar = [] self.stdMean = [] self.meanMean = [] self.td_error = [] self.td_errorVar = [] self.bbqn = bbqn.DeepQNetwork(self.sess, self.state_dim, self.action_dim, self.learning_rate, self.tau, action_bound, self.architecture, self.h1_size, self.h2_size, self.n_samples, self.minibatch_size, self.sigma_prior, self.n_batches, self.stddev_var_mu, self.stddev_var_logsigma, self.mean_log_sigma, self.importance_sampling, self.alpha_divergence, self.alpha, self.sigma_eps) # when all models are defined, init all variables init_op = tf.global_variables_initializer() self.sess.run(init_op) self.loadPolicy(self.in_policy_file) print 'loaded replay size: ', self.episodes[self.domainString].size() self.bbqn.update_target_network()
def __init__(self, in_policy_file, out_policy_file, domainString='CamRestaurants', is_training=False, action_names=None): super(DQNPolicy, self).__init__(domainString, is_training) tf.reset_default_graph() self.domainString = domainString self.domainUtil = FlatOnt.FlatDomainOntology(self.domainString) self.in_policy_file = in_policy_file self.out_policy_file = out_policy_file self.is_training = is_training self.accum_belief = [] self.domainUtil = FlatOnt.FlatDomainOntology(self.domainString) self.prev_state_check = None # pw: Use turn info for predictions # action vector creation action_names = [ ] # hardcoded to include slots for specific actions (request, confirm, select) action_names += [ "request(food)", "request(area)", "request(pricerange)", "confirm(food)", "confirm(area)", "confirm(pricerange)", "select(food)", "select(area)", "select(pricerange)", "inform", "inform_byname", "inform_alternatives", "bye", "repeat", "reqmore", "restart" ] num_actions = len(action_names) self.prev_state = None # parameter settings if 0: #cfg.has_option('dqnpolicy', 'n_in'): #ic304: this was giving me a weird error, disabled it until i can check it deeper self.n_in = cfg.getint('dqnpolicy', 'n_in') else: self.n_in = self.get_n_in(domainString) self.learning_rate = 0.001 if cfg.has_option('dqnpolicy', 'learning_rate'): self.learning_rate = cfg.getfloat('dqnpolicy', 'learning_rate') self.tau = 0.001 if cfg.has_option('dqnpolicy', 'tau'): self.tau = cfg.getfloat('dqnpolicy', 'tau') self.randomseed = 1234 if cfg.has_option('GENERAL', 'seed'): self.randomseed = cfg.getint('GENERAL', 'seed') self.gamma = 1.0 if cfg.has_option('dqnpolicy', 'gamma'): self.gamma = cfg.getfloat('dqnpolicy', 'gamma') self.regularisation = 'l2' if cfg.has_option('dqnpolicy', 'regularisation'): self.regularisation = cfg.get('dqnpolicy', 'regulariser') self.exploration_type = 'e-greedy' # Boltzman if cfg.has_option('dqnpolicy', 'exploration_type'): self.exploration_type = cfg.get('dqnpolicy', 'exploration_type') self.episodeNum = 1000 if cfg.has_option('dqnpolicy', 'episodeNum'): self.episodeNum = cfg.getfloat('dqnpolicy', 'episodeNum') self.maxiter = 5000 if cfg.has_option('dqnpolicy', 'maxiter'): self.maxiter = cfg.getfloat('dqnpolicy', 'maxiter') self.epsilon = 1 if cfg.has_option('dqnpolicy', 'epsilon'): self.epsilon = cfg.getfloat('dqnpolicy', 'epsilon') self.epsilon_start = 1 if cfg.has_option('dqnpolicy', 'epsilon_start'): self.epsilon_start = cfg.getfloat('dqnpolicy', 'epsilon_start') self.epsilon_end = 1 if cfg.has_option('dqnpolicy', 'epsilon_end'): self.epsilon_end = cfg.getfloat('dqnpolicy', 'epsilon_end') self.save_step = 100 if cfg.has_option('policy', 'save_step'): self.save_step = cfg.getint('policy', 'save_step') self.priorProbStart = 1.0 if cfg.has_option('dqnpolicy', 'prior_sample_prob_start'): self.priorProbStart = cfg.getfloat('dqnpolicy', 'prior_sample_prob_start') self.priorProbEnd = 0.1 if cfg.has_option('dqnpolicy', 'prior_sample_prob_end'): self.priorProbEnd = cfg.getfloat('dqnpolicy', 'prior_sample_prob_end') self.policyfeatures = [] if cfg.has_option('dqnpolicy', 'features'): logger.info('Features: ' + str(cfg.get('dqnpolicy', 'features'))) self.policyfeatures = json.loads(cfg.get('dqnpolicy', 'features')) self.max_k = 5 if cfg.has_option('dqnpolicy', 'max_k'): self.max_k = cfg.getint('dqnpolicy', 'max_k') self.learning_algorithm = 'drl' if cfg.has_option('dqnpolicy', 'learning_algorithm'): self.learning_algorithm = cfg.get('dqnpolicy', 'learning_algorithm') logger.info('Learning algorithm: ' + self.learning_algorithm) self.minibatch_size = 32 if cfg.has_option('dqnpolicy', 'minibatch_size'): self.minibatch_size = cfg.getint('dqnpolicy', 'minibatch_size') self.capacity = 1000 if cfg.has_option('dqnpolicy', 'capacity'): self.capacity = cfg.getint('dqnpolicy', 'capacity') self.replay_type = 'vanilla' if cfg.has_option('dqnpolicy', 'replay_type'): self.replay_type = cfg.get('dqnpolicy', 'replay_type') self.architecture = 'vanilla' if cfg.has_option('dqnpolicy', 'architecture'): self.architecture = cfg.get('dqnpolicy', 'architecture') if self.architecture == 'dip': self.architecture = 'dip2' self.q_update = 'single' if cfg.has_option('dqnpolicy', 'q_update'): self.q_update = cfg.get('dqnpolicy', 'q_update') self.h1_size = 130 if cfg.has_option('dqnpolicy', 'h1_size'): self.h1_size = cfg.getint('dqnpolicy', 'h1_size') self.h2_size = 130 if cfg.has_option('dqnpolicy', 'h2_size'): self.h2_size = cfg.getint('dqnpolicy', 'h2_size') self.training_frequency = 2 if cfg.has_option('dqnpolicy', 'training_frequency'): self.training_frequency = cfg.getint('dqnpolicy', 'training_frequency') # domain specific parameter settings (overrides general policy parameter settings) if cfg.has_option('dqnpolicy_' + domainString, 'n_in'): self.n_in = cfg.getint('dqnpolicy_' + domainString, 'n_in') if cfg.has_option('dqnpolicy_' + domainString, 'learning_rate'): self.learning_rate = cfg.getfloat('dqnpolicy_' + domainString, 'learning_rate') if cfg.has_option('dqnpolicy_' + domainString, 'tau'): self.tau = cfg.getfloat('dqnpolicy_' + domainString, 'tau') if cfg.has_option('dqnpolicy_' + domainString, 'gamma'): self.gamma = cfg.getfloat('dqnpolicy_' + domainString, 'gamma') if cfg.has_option('dqnpolicy_' + domainString, 'regularisation'): self.regularisation = cfg.get('dqnpolicy_' + domainString, 'regulariser') if cfg.has_option('dqnpolicy_' + domainString, 'exploration_type'): self.exploration_type = cfg.get('dqnpolicy_' + domainString, 'exploration_type') if cfg.has_option('dqnpolicy_' + domainString, 'episodeNum'): self.episodeNum = cfg.getfloat('dqnpolicy_' + domainString, 'episodeNum') if cfg.has_option('dqnpolicy_' + domainString, 'maxiter'): self.maxiter = cfg.getfloat('dqnpolicy_' + domainString, 'maxiter') if cfg.has_option('dqnpolicy_' + domainString, 'epsilon'): self.epsilon = cfg.getfloat('dqnpolicy_' + domainString, 'epsilon') if cfg.has_option('dqnpolicy_' + domainString, 'epsilon_start'): self.epsilon_start = cfg.getfloat('dqnpolicy_' + domainString, 'epsilon_start') if cfg.has_option('dqnpolicy_' + domainString, 'epsilon_end'): self.epsilon_end = cfg.getfloat('dqnpolicy_' + domainString, 'epsilon_end') if cfg.has_option('policy_' + domainString, 'save_step'): self.save_step = cfg.getint('policy_' + domainString, 'save_step') if cfg.has_option('dqnpolicy_' + domainString, 'prior_sample_prob_start'): self.priorProbStart = cfg.getfloat('dqnpolicy_' + domainString, 'prior_sample_prob_start') if cfg.has_option('dqnpolicy_' + domainString, 'prior_sample_prob_end'): self.priorProbEnd = cfg.getfloat('dqnpolicy_' + domainString, 'prior_sample_prob_end') if cfg.has_option('dqnpolicy_' + domainString, 'features'): logger.info('Features: ' + str(cfg.get('dqnpolicy_' + domainString, 'features'))) self.policyfeatures = json.loads( cfg.get('dqnpolicy_' + domainString, 'features')) if cfg.has_option('dqnpolicy_' + domainString, 'max_k'): self.max_k = cfg.getint('dqnpolicy_' + domainString, 'max_k') if cfg.has_option('dqnpolicy_' + domainString, 'learning_algorithm'): self.learning_algorithm = cfg.get('dqnpolicy_' + domainString, 'learning_algorithm') logger.info('Learning algorithm: ' + self.learning_algorithm) if cfg.has_option('dqnpolicy_' + domainString, 'minibatch_size'): self.minibatch_size = cfg.getint('dqnpolicy_' + domainString, 'minibatch_size') if cfg.has_option('dqnpolicy_' + domainString, 'capacity'): self.capacity = cfg.getint('dqnpolicy_' + domainString, 'capacity') if cfg.has_option('dqnpolicy_' + domainString, 'replay_type'): self.replay_type = cfg.get('dqnpolicy_' + domainString, 'replay_type') if cfg.has_option('dqnpolicy_' + domainString, 'architecture'): self.architecture = cfg.get('dqnpolicy_' + domainString, 'architecture') if cfg.has_option('dqnpolicy_' + domainString, 'q_update'): self.q_update = cfg.get('dqnpolicy_' + domainString, 'q_update') if cfg.has_option('dqnpolicy_' + domainString, 'h1_size'): self.h1_size = cfg.getint('dqnpolicy_' + domainString, 'h1_size') if cfg.has_option('dqnpolicy_' + domainString, 'h2_size'): self.h2_size = cfg.getint('dqnpolicy_' + domainString, 'h2_size') if cfg.has_option('dqnpolicy_' + domainString, 'training_frequency'): self.training_frequency = cfg.getint('dqnpolicy_' + domainString, 'training_frequency') """ self.shuffle = False if cfg.has_option('dqnpolicy_'+domainString, 'experience_replay'): self.shuffle = cfg.getboolean('dqnpolicy_'+domainString, 'experience_replay') if not self.shuffle: # If we don't use experience replay, we don't need to maintain # sliding window of experiences with maximum capacity. # We only need to maintain the data of minibatch_size self.capacity = self.minibatch_size """ self.episode_ave_max_q = [] os.environ["CUDA_VISIBLE_DEVICES"] = "" policytype = 'dqn' self.dropout_rate = 0. if cfg.has_option('dqnpolicy', 'dropout_rate'): self.dropout_rate = cfg.getfloat('dqnpolicy', 'dropout_rate') if cfg.has_option('policy', 'policytype'): policytype = cfg.get('policy', 'policytype') if policytype != 'feudal': # init session self.sess = tf.Session() with tf.device("/cpu:0"): np.random.seed(self.randomseed) tf.set_random_seed(self.randomseed) # initialise an replay buffer if self.replay_type == 'vanilla': self.episodes[self.domainString] = ReplayBuffer( self.capacity, self.minibatch_size, self.randomseed) elif self.replay_type == 'prioritized': self.episodes[self.domainString] = ReplayPrioritised( self.capacity, self.minibatch_size, self.randomseed) self.samplecount = 0 self.episodecount = 0 # construct the models self.state_dim = self.n_in if self.architecture == 'dip2': self.state_dim = 89 self.summaryaction = SummaryAction.SummaryAction(domainString) if action_names is None: self.action_names = self.summaryaction.action_names else: self.action_names = action_names self.action_dim = len(self.action_names) action_bound = len(self.action_names) self.stats = [0 for _ in range(self.action_dim)] self.dqn = dqn.DeepQNetwork(self.sess, self.state_dim, self.action_dim, \ self.learning_rate, self.tau, action_bound, self.minibatch_size, self.architecture, self.h1_size, self.h2_size, dropout_rate=self.dropout_rate) # when all models are defined, init all variables init_op = tf.global_variables_initializer() self.sess.run(init_op) self.loadPolicy(self.in_policy_file) print 'loaded replay size: ', self.episodes[ self.domainString].size() self.dqn.update_target_network()
def __init__(self, in_policy_file, out_policy_file, ontology, cfg, logger, SetObj, domainString='CamRestaurants', is_training=False): super(RBDQNPolicy, self).__init__(domainString, ontology, cfg, logger, SetObj, is_training) # tf.reset_default_graph() self.domainString = domainString self.domainUtil = FlatOnt.FlatDomainOntology(self.domainString, cfg, ontology.OntologyUtils, SetObj) self.in_policy_file = in_policy_file self.out_policy_file = out_policy_file self.is_training = is_training self.accum_belief = [] self.prev_state_check = None self.ontology = ontology self.logger = logger self.SetObj =SetObj self.atoms = 21 self.vmin = -1 self.vmax = 1 self.support = np.linspace(self.vmin, self.vmax, self.atoms) self.delta_z = float(self.vmax - self.vmin) / (self.atoms - 1) # parameter settings if 0:#cfg.has_option('dqnpolicy', 'n_in'): #ic304: this was giving me a weird error, disabled it until i can check it deeper self.n_in = cfg.getint('dqnpolicy', 'n_in') else: self.n_in = self.get_n_in(domainString) self.learning_rate = 0.001 if cfg.has_option('dqnpolicy', 'learning_rate'): self.learning_rate = cfg.getfloat('dqnpolicy', 'learning_rate') self.tau = 0.001 if cfg.has_option('dqnpolicy', 'tau'): self.tau = cfg.getfloat('dqnpolicy', 'tau') self.randomseed = 1234 if cfg.has_option('GENERAL', 'seed'): self.randomseed = cfg.getint('GENERAL', 'seed') self.gamma = 1.0 if cfg.has_option('dqnpolicy', 'gamma'): self.gamma = cfg.getfloat('dqnpolicy', 'gamma') self.regularisation = 'l2' if cfg.has_option('dqnpolicy', 'regularisation'): self.regularisation = cfg.get('dqnpolicy', 'regulariser') self.exploration_type = 'e-greedy' # Boltzman if cfg.has_option('dqnpolicy', 'exploration_type'): self.exploration_type = cfg.get('dqnpolicy', 'exploration_type') self.episodeNum = 1000 if cfg.has_option('dqnpolicy', 'episodeNum'): self.episodeNum = cfg.getfloat('dqnpolicy', 'episodeNum') self.maxiter = 5000 if cfg.has_option('dqnpolicy', 'maxiter'): self.maxiter = cfg.getfloat('dqnpolicy', 'maxiter') self.epsilon = 0.0 # if cfg.has_option('dqnpolicy', 'epsilon'): # self.epsilon = cfg.getfloat('dqnpolicy', 'epsilon') self.epsilon_start = 0.0 # if cfg.has_option('dqnpolicy', 'epsilon_start'): # self.epsilon_start = cfg.getfloat('dqnpolicy', 'epsilon_start') self.epsilon_end = 0.0 if cfg.has_option('dqnpolicy', 'epsilon_end'): self.epsilon_end = cfg.getfloat('dqnpolicy', 'epsilon_end') self.save_step = 100 if cfg.has_option('policy', 'save_step'): self.save_step = cfg.getint('policy', 'save_step') self.priorProbStart = 1.0 if cfg.has_option('dqnpolicy', 'prior_sample_prob_start'): self.priorProbStart = cfg.getfloat('dqnpolicy', 'prior_sample_prob_start') self.priorProbEnd = 0.1 if cfg.has_option('dqnpolicy', 'prior_sample_prob_end'): self.priorProbEnd = cfg.getfloat('dqnpolicy', 'prior_sample_prob_end') self.policyfeatures = [] if cfg.has_option('dqnpolicy', 'features'): self.logger.info('Features: ' + str(cfg.get('dqnpolicy', 'features'))) self.policyfeatures = json.loads(cfg.get('dqnpolicy', 'features')) self.max_k = 5 if cfg.has_option('dqnpolicy', 'max_k'): self.max_k = cfg.getint('dqnpolicy', 'max_k') self.learning_algorithm = 'drl' if cfg.has_option('dqnpolicy', 'learning_algorithm'): self.learning_algorithm = cfg.get('dqnpolicy', 'learning_algorithm') self.logger.info('Learning algorithm: ' + self.learning_algorithm) self.minibatch_size = 32 if cfg.has_option('dqnpolicy', 'minibatch_size'): self.minibatch_size = cfg.getint('dqnpolicy', 'minibatch_size') self.capacity = 1000 # max(self.minibatch_size, 2000) if cfg.has_option('dqnpolicy', 'capacity'): self.capacity = max(cfg.getint('dqnpolicy', 'capacity'), 2000) self.replay_type = 'prioritized' if cfg.has_option('dqnpolicy', 'replay_type'): self.replay_type = cfg.get('dqnpolicy', 'replay_type') self.architecture = 'vanilla' if cfg.has_option('dqnpolicy', 'architecture'): self.architecture = cfg.get('dqnpolicy', 'architecture') self.q_update = 'double' if cfg.has_option('dqnpolicy', 'q_update'): self.q_update = cfg.get('dqnpolicy', 'q_update') self.h1_size = 130 if cfg.has_option('dqnpolicy', 'h1_size'): self.h1_size = cfg.getint('dqnpolicy', 'h1_size') self.h1_drop = None if cfg.has_option('dqnpolicy', 'h1_drop'): self.h1_drop = cfg.getfloat('dqnpolicy', 'h1_drop') self.h2_size = 130 if cfg.has_option('dqnpolicy', 'h2_size'): self.h2_size = cfg.getint('dqnpolicy', 'h2_size') self.h2_drop = None if cfg.has_option('dqnpolicy', 'h2_drop'): self.h2_drop = cfg.getfloat('dqnpolicy', 'h2_drop') self.nature_mode = None if cfg.has_option('dqnpolicy', 'nature_mode'): self.nature_mode = cfg.getboolean('dqnpolicy', 'nature_mode') self.madqn_hidden_layers = None if cfg.has_option('dqnpolicy', 'madqn_hidden_layers'): self.madqn_hidden_layers = cfg.getint('dqnpolicy', 'madqn_hidden_layers') self.madqn_local_hidden_units = None if cfg.has_option('dqnpolicy', 'madqn_local_hidden_units'): self.madqn_local_hidden_units = cfg.get('dqnpolicy', 'madqn_local_hidden_units') self.madqn_local_hidden_units = eval(self.madqn_local_hidden_units) self.madqn_local_dropouts = None if cfg.has_option('dqnpolicy', 'madqn_local_dropouts'): self.madqn_local_dropouts = cfg.get('dqnpolicy', 'madqn_local_dropouts') self.madqn_local_dropouts = eval(self.madqn_local_dropouts) self.madqn_global_hidden_units = None if cfg.has_option('dqnpolicy', 'madqn_global_hidden_units'): self.madqn_global_hidden_units = cfg.get('dqnpolicy', 'madqn_global_hidden_units') self.madqn_global_hidden_units = eval(self.madqn_global_hidden_units) self.madqn_global_dropouts = None if cfg.has_option('dqnpolicy', 'madqn_global_dropouts'): self.madqn_global_dropouts = cfg.get('dqnpolicy', 'madqn_global_dropouts') self.madqn_global_dropouts = eval(self.madqn_global_dropouts) self.madqn_private_rate = None if cfg.has_option('dqnpolicy', 'madqn_private_rate'): self.madqn_private_rate = cfg.getfloat('dqnpolicy', 'madqn_private_rate') self.madqn_sort_input_vec = False if cfg.has_option('dqnpolicy', 'madqn_sort_input_vec'): self.madqn_sort_input_vec = cfg.getboolean('dqnpolicy', 'madqn_sort_input_vec') self.madqn_share_last_layer = False if cfg.has_option('dqnpolicy', 'madqn_share_last_layer'): self.madqn_share_last_layer = cfg.getboolean('dqnpolicy', 'madqn_share_last_layer') self.madqn_shared_last_layer_use_bias = True if cfg.has_option('dqnpolicy', 'madqn_shared_last_layer_use_bias'): self.madqn_shared_last_layer_use_bias = cfg.getboolean('dqnpolicy', 'madqn_shared_last_layer_use_bias') self.madqn_recurrent_mode = False if cfg.has_option('dqnpolicy', 'madqn_recurrent_mode'): self.madqn_recurrent_mode = cfg.getboolean('dqnpolicy', 'madqn_recurrent_mode') self.madqn_input_comm = True if cfg.has_option('dqnpolicy', 'madqn_input_comm'): self.madqn_input_comm = cfg.getboolean('dqnpolicy', 'madqn_input_comm') self.madqn_target_explore = False if cfg.has_option('dqnpolicy', 'madqn_target_explore'): self.madqn_target_explore = cfg.getboolean('dqnpolicy', 'madqn_target_explore') self.madqn_concrete_share_rate = False if cfg.has_option('dqnpolicy', 'madqn_concrete_share_rate'): self.madqn_concrete_share_rate = cfg.getboolean('dqnpolicy', 'madqn_concrete_share_rate') self.madqn_dropout_regularizer = 0. if cfg.has_option('dqnpolicy', 'madqn_dropout_regularizer'): self.madqn_dropout_regularizer = cfg.getfloat('dqnpolicy', 'madqn_dropout_regularizer') self.madqn_weight_regularizer = 0. if cfg.has_option('dqnpolicy', 'madqn_weight_regularizer'): self.madqn_weight_regularizer = cfg.getfloat('dqnpolicy', 'madqn_weight_regularizer') self.madqn_non_local_mode = False if cfg.has_option('dqnpolicy', 'madqn_non_local_mode'): self.madqn_non_local_mode = cfg.getboolean('dqnpolicy', 'madqn_non_local_mode') self.madqn_block_mode = False if cfg.has_option('dqnpolicy', 'madqn_block_mode'): self.madqn_block_mode = cfg.getboolean('dqnpolicy', 'madqn_block_mode') self.madqn_slots_comm = True if cfg.has_option('dqnpolicy', 'madqn_slots_comm'): self.madqn_slots_comm = cfg.getboolean('dqnpolicy', 'madqn_slots_comm') self.madqn_use_dueling = False if cfg.has_option('dqnpolicy', 'madqn_use_dueling'): self.madqn_use_dueling = cfg.getboolean('dqnpolicy', 'madqn_use_dueling') self.madqn_topo_learning_mode = False if cfg.has_option('dqnpolicy', 'madqn_topo_learning_mode'): self.madqn_topo_learning_mode = cfg.getboolean('dqnpolicy', 'madqn_topo_learning_mode') self.madqn_message_embedding = False if cfg.has_option('dqnpolicy', 'madqn_message_embedding'): self.madqn_message_embedding = cfg.getboolean('dqnpolicy', 'madqn_message_embedding') self.madqn_dueling_share_last = False if cfg.has_option('dqnpolicy', 'madqn_dueling_share_last'): self.madqn_dueling_share_last = cfg.getboolean('dqnpolicy', 'madqn_dueling_share_last') self.state_feature = 'vanilla' if cfg.has_option('dqnpolicy', 'state_feature'): self.state_feature = cfg.get('dqnpolicy', 'state_feature') self.init_policy = None if cfg.has_option('dqnpolicy', 'init_policy'): self.init_policy = cfg.get('dqnpolicy', 'init_policy') self.training_frequency = 2 if cfg.has_option('dqnpolicy', 'training_frequency'): self.training_frequency = cfg.getint('dqnpolicy', 'training_frequency') # domain specific parameter settings (overrides general policy parameter settings) if cfg.has_option('dqnpolicy_' + domainString, 'n_in'): self.n_in = cfg.getint('dqnpolicy_' + domainString, 'n_in') if cfg.has_option('dqnpolicy_' + domainString, 'learning_rate'): self.learning_rate = cfg.getfloat('dqnpolicy_' + domainString, 'learning_rate') if cfg.has_option('dqnpolicy_' + domainString, 'tau'): self.tau = cfg.getfloat('dqnpolicy_' + domainString, 'tau') if cfg.has_option('dqnpolicy_' + domainString, 'gamma'): self.gamma = cfg.getfloat('dqnpolicy_' + domainString, 'gamma') if cfg.has_option('dqnpolicy_' + domainString, 'regularisation'): self.regularisation = cfg.get('dqnpolicy_' + domainString, 'regulariser') if cfg.has_option('dqnpolicy_' + domainString, 'exploration_type'): self.exploration_type = cfg.get('dqnpolicy_' + domainString, 'exploration_type') if cfg.has_option('dqnpolicy_' + domainString, 'episodeNum'): self.episodeNum = cfg.getfloat('dqnpolicy_' + domainString, 'episodeNum') if cfg.has_option('dqnpolicy_' + domainString, 'maxiter'): self.maxiter = cfg.getfloat('dqnpolicy_' + domainString, 'maxiter') if cfg.has_option('dqnpolicy_' + domainString, 'epsilon'): self.epsilon = cfg.getfloat('dqnpolicy_' + domainString, 'epsilon') if cfg.has_option('dqnpolicy_' + domainString, 'epsilon_start'): self.epsilon_start = cfg.getfloat('dqnpolicy_' + domainString, 'epsilon_start') if cfg.has_option('dqnpolicy_' + domainString, 'epsilon_end'): self.epsilon_end = cfg.getfloat('dqnpolicy_' + domainString, 'epsilon_end') if cfg.has_option('policy_' + domainString, 'save_step'): self.save_step = cfg.getint('policy_' + domainString, 'save_step') if cfg.has_option('dqnpolicy_' + domainString, 'prior_sample_prob_start'): self.priorProbStart = cfg.getfloat('dqnpolicy_' + domainString, 'prior_sample_prob_start') if cfg.has_option('dqnpolicy_' + domainString, 'prior_sample_prob_end'): self.priorProbEnd = cfg.getfloat('dqnpolicy_' + domainString, 'prior_sample_prob_end') if cfg.has_option('dqnpolicy_' + domainString, 'features'): self.logger.info('Features: ' + str(cfg.get('dqnpolicy_' + domainString, 'features'))) self.policyfeatures = json.loads(cfg.get('dqnpolicy_' + domainString, 'features')) if cfg.has_option('dqnpolicy_' + domainString, 'max_k'): self.max_k = cfg.getint('dqnpolicy_' + domainString, 'max_k') if cfg.has_option('dqnpolicy_' + domainString, 'learning_algorithm'): self.learning_algorithm = cfg.get('dqnpolicy_' + domainString, 'learning_algorithm') self.logger.info('Learning algorithm: ' + self.learning_algorithm) if cfg.has_option('dqnpolicy_' + domainString, 'minibatch_size'): self.minibatch_size = cfg.getint('dqnpolicy_' + domainString, 'minibatch_size') if cfg.has_option('dqnpolicy_' + domainString, 'capacity'): self.capacity = max(cfg.getint('dqnpolicy_' + domainString, 'capacity'), 2000) if cfg.has_option('dqnpolicy_' + domainString, 'replay_type'): self.replay_type = cfg.get('dqnpolicy_' + domainString, 'replay_type') if cfg.has_option('dqnpolicy_' + domainString, 'architecture'): self.architecture = cfg.get('dqnpolicy_' + domainString, 'architecture') if cfg.has_option('dqnpolicy_' + domainString, 'q_update'): self.q_update = cfg.get('dqnpolicy_' + domainString, 'q_update') if cfg.has_option('dqnpolicy_' + domainString, 'h1_size'): self.h1_size = cfg.getint('dqnpolicy_' + domainString, 'h1_size') if cfg.has_option('dqnpolicy_' + domainString, 'h1_drop'): self.h1_drop = cfg.getfloat('dqnpolicy_' + domainString, 'h1_drop') if cfg.has_option('dqnpolicy_' + domainString, 'h2_size'): self.h2_size = cfg.getint('dqnpolicy_' + domainString, 'h2_size') if cfg.has_option('dqnpolicy_' + domainString, 'h2_drop'): self.h2_drop = cfg.getfloat('dqnpolicy_' + domainString, 'h2_drop') if cfg.has_option('dqnpolicy_' + domainString, 'training_frequency'): self.training_frequency = cfg.getint('dqnpolicy_' + domainString, 'training_frequency') """ self.shuffle = False if cfg.has_option('dqnpolicy_'+domainString, 'experience_replay'): self.shuffle = cfg.getboolean('dqnpolicy_'+domainString, 'experience_replay') if not self.shuffle: # If we don't use experience replay, we don't need to maintain # sliding window of experiences with maximum capacity. # We only need to maintain the data of minibatch_size self.capacity = self.minibatch_size """ self.episode_ave_max_q = [] os.environ["CUDA_VISIBLE_DEVICES"] = "" # init session # self.sess = tf.Session() # with tf.device("/cpu:0"): np.random.seed(self.randomseed) # tf.set_random_seed(self.randomseed) # initialise an replay buffer if self.replay_type == 'vanilla': self.episodes[self.domainString] = ReplayBuffer(self.capacity, self.minibatch_size, self.randomseed) elif self.replay_type == 'prioritized': self.episodes[self.domainString] = ReplayPrioritised(self.capacity, self.minibatch_size, self.randomseed) self.samplecount = 0 self.episodecount = 0 # construct the models self.state_dim = self.n_in self.summaryaction = SummaryAction.SummaryAction(domainString, self.ontology, self.SetObj) self.action_dim = len(self.summaryaction.action_names) action_bound = len(self.summaryaction.action_names) self.stats = [0 for _ in range(self.action_dim)] import tube self.dqn = dqn.DeepRBQNetwork(self.state_dim, self.action_dim, self.atoms, \ self.learning_rate, self.tau, action_bound, self.minibatch_size, self.architecture, self.h1_size, self.h1_drop, self.h2_size, self.h2_drop, self.domainString, self.madqn_hidden_layers, self.madqn_local_hidden_units, self.madqn_local_dropouts, self.madqn_global_hidden_units, self.madqn_global_dropouts, self.madqn_private_rate, self.madqn_sort_input_vec, self.madqn_share_last_layer, self.madqn_recurrent_mode, self.madqn_input_comm, self.madqn_target_explore, concrete_share_rate=self.madqn_concrete_share_rate, dropout_regularizer=self.madqn_dropout_regularizer, weight_regularizer=self.madqn_weight_regularizer, non_local_mode=self.madqn_non_local_mode, block_mode=self.madqn_block_mode, slots_comm=self.madqn_slots_comm, topo_learning_mode=self.madqn_topo_learning_mode, use_dueling=self.madqn_use_dueling, dueling_share_last=self.madqn_dueling_share_last, message_embedding=self.madqn_message_embedding, state_feature=self.state_feature, init_policy=self.init_policy, shared_last_layer_use_bias=self.madqn_shared_last_layer_use_bias, seed=tube.seed) # when all models are defined, init all variables # init_op = tf.global_variables_initializer() # self.sess.run(init_op) lock.acquire() self.loadPolicy(self.in_policy_file) lock.release() print('###################################################') print(self.domainString + ' loaded replay size: ' + str(self.episodes[self.domainString].size())) # globalEpisodeCount = copy.deepcopy(Settings.get_count()) # globalEpisodeCount != 0: lock.acquire() # self.dqn.update_target_network() self._savePolicyInc() lock.release() Settings.load_policy(self.dqn, threading.currentThread().getName())
def __init__(self, in_policy_file, out_policy_file, domainString='CamRestaurants', is_training=False, action_names=None): super(DQNPolicy, self).__init__(domainString, is_training) tf.reset_default_graph() self.domainString = domainString self.domainUtil = FlatOnt.FlatDomainOntology(self.domainString) self.in_policy_file = in_policy_file self.out_policy_file = out_policy_file self.is_training = is_training self.accum_belief = [] self.prev_state_check = None #improvement================================== self.intrinsic_reward_method = None self.conf = ConfigParser.ConfigParser() if utils.Settings.config.has_option('scme', 'method'): self.intrinsic_reward_method = utils.Settings.config.get( 'scme', 'method') #improvement================================== # parameter settings if 0: #cfg.has_option('dqnpolicy', 'n_in'): #ic304: this was giving me a weird error, disabled it until i can check it deeper self.n_in = cfg.getint('dqnpolicy', 'n_in') else: self.n_in = self.get_n_in(domainString) self.learning_rate = 0.001 if utils.Settings.config.has_option('dqnpolicy', 'learning_rate'): self.learning_rate = utils.Settings.config.getfloat( 'dqnpolicy', 'learning_rate') self.tau = 0.001 if utils.Settings.config.has_option('dqnpolicy', 'tau'): self.tau = utils.Settings.config.getfloat('dqnpolicy', 'tau') # self.randomseed = 1234 #TODO cfg import doesn't work anymore therfore i changed all the cfg to u.S.config. # if cfg.has_option('GENERAL', 'seed'): # self.randomseed = cfg.getint('GENERAL', 'seed') #see same below, this is just kept as example to try self.randomseed = 1234 if utils.Settings.config.has_option('GENERAL', 'seed'): self.randomseed = utils.Settings.config.getint('GENERAL', 'seed') self.gamma = 1.0 if utils.Settings.config.has_option('dqnpolicy', 'gamma'): self.gamma = utils.Settings.config.getfloat('dqnpolicy', 'gamma') self.regularisation = 'l2' if utils.Settings.config.has_option('dqnpolicy', 'regularisation'): self.regularisation = utils.Settings.config.get( 'dqnpolicy', 'regulariser') self.exploration_type = 'e-greedy' # Boltzman if utils.Settings.config.has_option('dqnpolicy', 'exploration_type'): self.exploration_type = utils.Settings.config.get( 'dqnpolicy', 'exploration_type') self.episodeNum = 1000 if utils.Settings.config.has_option('dqnpolicy', 'episodeNum'): self.episodeNum = utils.Settings.config.getfloat( 'dqnpolicy', 'episodeNum') self.maxiter = 5000 if utils.Settings.config.has_option('dqnpolicy', 'maxiter'): self.maxiter = utils.Settings.config.getfloat( 'dqnpolicy', 'maxiter') self.epsilon = 1 if utils.Settings.config.has_option('dqnpolicy', 'epsilon'): self.epsilon = utils.Settings.config.getfloat( 'dqnpolicy', 'epsilon') self.epsilon_start = 1 if utils.Settings.config.has_option('dqnpolicy', 'epsilon_start'): self.epsilon_start = utils.Settings.config.getfloat( 'dqnpolicy', 'epsilon_start') self.epsilon_end = 1 if utils.Settings.config.has_option('dqnpolicy', 'epsilon_end'): self.epsilon_end = utils.Settings.config.getfloat( 'dqnpolicy', 'epsilon_end') self.save_step = 100 if utils.Settings.config.has_option('policy', 'save_step'): self.save_step = utils.Settings.config.getint( 'policy', 'save_step') self.priorProbStart = 1.0 if utils.Settings.config.has_option('dqnpolicy', 'prior_sample_prob_start'): self.priorProbStart = utils.Settings.config.getfloat( 'dqnpolicy', 'prior_sample_prob_start') self.priorProbEnd = 0.1 if utils.Settings.config.has_option('dqnpolicy', 'prior_sample_prob_end'): self.priorProbEnd = utils.Settings.config.getfloat( 'dqnpolicy', 'prior_sample_prob_end') self.policyfeatures = [] if utils.Settings.config.has_option('dqnpolicy', 'features'): logger.info( 'Features: ' + str(utils.Settings.config.get('dqnpolicy', 'features'))) self.policyfeatures = json.loads( utils.Settings.config.get('dqnpolicy', 'features')) self.max_k = 5 if utils.Settings.config.has_option('dqnpolicy', 'max_k'): self.max_k = utils.Settings.config.getint('dqnpolicy', 'max_k') self.learning_algorithm = 'drl' if utils.Settings.config.has_option('dqnpolicy', 'learning_algorithm'): self.learning_algorithm = utils.Settings.config.get( 'dqnpolicy', 'learning_algorithm') logger.info('Learning algorithm: ' + self.learning_algorithm) self.minibatch_size = 32 if utils.Settings.config.has_option('dqnpolicy', 'minibatch_size'): self.minibatch_size = utils.Settings.config.getint( 'dqnpolicy', 'minibatch_size') self.capacity = 1000 if utils.Settings.config.has_option('dqnpolicy', 'capacity'): self.capacity = utils.Settings.config.getint( 'dqnpolicy', 'capacity') self.replay_type = 'vanilla' if utils.Settings.config.has_option('dqnpolicy', 'replay_type'): self.replay_type = utils.Settings.config.get( 'dqnpolicy', 'replay_type') self.architecture = 'vanilla' if utils.Settings.config.has_option('dqnpolicy', 'architecture'): self.architecture = utils.Settings.config.get( 'dqnpolicy', 'architecture') if self.architecture == 'dip': self.architecture = 'dip2' self.q_update = 'single' if utils.Settings.config.has_option('dqnpolicy', 'q_update'): self.q_update = utils.Settings.config.get('dqnpolicy', 'q_update') self.h1_size = 130 if utils.Settings.config.has_option('dqnpolicy', 'h1_size'): self.h1_size = utils.Settings.config.getint('dqnpolicy', 'h1_size') self.h2_size = 130 if utils.Settings.config.has_option('dqnpolicy', 'h2_size'): self.h2_size = utils.Settings.config.getint('dqnpolicy', 'h2_size') self.training_frequency = 2 if utils.Settings.config.has_option('dqnpolicy', 'training_frequency'): self.training_frequency = utils.Settings.config.getint( 'dqnpolicy', 'training_frequency') # domain specific parameter settings (overrides general policy parameter settings) if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'n_in'): self.n_in = utils.Settings.config.getint( 'dqnpolicy_' + domainString, 'n_in') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'learning_rate'): self.learning_rate = utils.Settings.config.getfloat( 'dqnpolicy_' + domainString, 'learning_rate') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'tau'): self.tau = utils.Settings.config.getfloat( 'dqnpolicy_' + domainString, 'tau') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'gamma'): self.gamma = utils.Settings.config.getfloat( 'dqnpolicy_' + domainString, 'gamma') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'regularisation'): self.regularisation = utils.Settings.config.get( 'dqnpolicy_' + domainString, 'regulariser') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'exploration_type'): self.exploration_type = utils.Settings.config.get( 'dqnpolicy_' + domainString, 'exploration_type') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'episodeNum'): self.episodeNum = utils.Settings.config.getfloat( 'dqnpolicy_' + domainString, 'episodeNum') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'maxiter'): self.maxiter = utils.Settings.config.getfloat( 'dqnpolicy_' + domainString, 'maxiter') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'epsilon'): self.epsilon = utils.Settings.config.getfloat( 'dqnpolicy_' + domainString, 'epsilon') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'epsilon_start'): self.epsilon_start = utils.Settings.config.getfloat( 'dqnpolicy_' + domainString, 'epsilon_start') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'epsilon_end'): self.epsilon_end = utils.Settings.config.getfloat( 'dqnpolicy_' + domainString, 'epsilon_end') if utils.Settings.config.has_option('policy_' + domainString, 'save_step'): self.save_step = utils.Settings.config.getint( 'policy_' + domainString, 'save_step') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'prior_sample_prob_start'): self.priorProbStart = utils.Settings.config.getfloat( 'dqnpolicy_' + domainString, 'prior_sample_prob_start') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'prior_sample_prob_end'): self.priorProbEnd = utils.Settings.config.getfloat( 'dqnpolicy_' + domainString, 'prior_sample_prob_end') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'features'): logger.info('Features: ' + str( utils.Settings.config.get('dqnpolicy_' + domainString, 'features'))) self.policyfeatures = json.loads( utils.Settings.config.get('dqnpolicy_' + domainString, 'features')) if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'max_k'): self.max_k = utils.Settings.config.getint( 'dqnpolicy_' + domainString, 'max_k') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'learning_algorithm'): self.learning_algorithm = utils.Settings.config.get( 'dqnpolicy_' + domainString, 'learning_algorithm') logger.info('Learning algorithm: ' + self.learning_algorithm) if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'minibatch_size'): self.minibatch_size = utils.Settings.config.getint( 'dqnpolicy_' + domainString, 'minibatch_size') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'capacity'): self.capacity = utils.Settings.config.getint( 'dqnpolicy_' + domainString, 'capacity') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'replay_type'): self.replay_type = utils.Settings.config.get( 'dqnpolicy_' + domainString, 'replay_type') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'architecture'): self.architecture = utils.Settings.config.get( 'dqnpolicy_' + domainString, 'architecture') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'q_update'): self.q_update = utils.Settings.config.get( 'dqnpolicy_' + domainString, 'q_update') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'h1_size'): self.h1_size = utils.Settings.config.getint( 'dqnpolicy_' + domainString, 'h1_size') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'h2_size'): self.h2_size = utils.Settings.config.getint( 'dqnpolicy_' + domainString, 'h2_size') if utils.Settings.config.has_option('dqnpolicy_' + domainString, 'training_frequency'): self.training_frequency = utils.Settings.config.getint( 'dqnpolicy_' + domainString, 'training_frequency') """ self.shuffle = False if cfg.has_option('dqnpolicy_'+domainString, 'experience_replay'): self.shuffle = cfg.getboolean('dqnpolicy_'+domainString, 'experience_replay') if not self.shuffle: # If we don't use experience replay, we don't need to maintain # sliding window of experiences with maximum capacity. # We only need to maintain the data of minibatch_size self.capacity = self.minibatch_size """ self.episode_ave_max_q = [] self.curiositypred_loss = [] #os.environ["CUDA_VISIBLE_DEVICES"] = "" policytype = 'dqn' self.dropout_rate = 0. if utils.Settings.config.has_option('dqnpolicy', 'dropout_rate'): self.dropout_rate = utils.Settings.config.getfloat( 'dqnpolicy', 'dropout_rate') if utils.Settings.config.has_option('policy', 'policytype'): policytype = utils.Settings.config.get('policy', 'policytype') if policytype != 'feudal': self.sess = tf.Session() with tf.device("/cpu:0"): np.random.seed(self.randomseed) tf.set_random_seed(self.randomseed) # initialise an replay buffer if self.replay_type == 'vanilla': self.episodes[self.domainString] = ReplayBuffer( self.capacity, self.minibatch_size, self.randomseed) elif self.replay_type == 'prioritized': self.episodes[self.domainString] = ReplayPrioritised( self.capacity, self.minibatch_size, self.randomseed) self.samplecount = 0 self.episodecount = 0 # construct the models self.state_dim = self.n_in if self.architecture == 'dip2': self.state_dim = 89 self.summaryaction = SummaryAction.SummaryAction(domainString) if action_names is None: self.action_names = self.summaryaction.action_names else: self.action_names = action_names self.action_dim = len(self.action_names) action_bound = len(self.action_names) self.stats = [0 for _ in range(self.action_dim)] self.dqn = dqn.DeepQNetwork(self.sess, self.state_dim, self.action_dim, \ self.learning_rate, self.tau, action_bound, self.minibatch_size, self.architecture, self.h1_size, self.h2_size, dropout_rate=self.dropout_rate) #self.curiosityFunctions = scme(self.sess, self.state_dim, self.action_dim, self.randomseed) # when all models are defined, init all variables init_op = tf.global_variables_initializer() self.sess.run(init_op) self.loadPolicy(self.in_policy_file) print 'loaded replay size: ', self.episodes[ self.domainString].size() #improvement================================== #initial if self.intrinsic_reward_method == 'vime': self.vime_model = vime(self.state_dim, self.action_dim) self.vime_model.load_model('model/vime_model/' + self.in_policy_file) elif self.intrinsic_reward_method == 'cme': self.cme_model = cme(self.state_dim, self.action_dim) self.cme_model.load_model('model/cme_model/' + self.in_policy_file) elif self.intrinsic_reward_method == 'scme': self.scme_model = scme(self.state_dim, self.action_dim) self.scme_model.load_model('model/scme_model/' + self.in_policy_file) #improvement================================== self.dqn.update_target_network()