コード例 #1
0
from numpy import empty
from DZ_observation_reduction import spectra_reduction
from shutil import copy as shu_copy

#Load iraf pypeline object
dz = spectra_reduction()

#Entries for new files
data_dict = {'reduc_tag': 'biascorr'}

#Load reduction data frame
dz.declare_catalogue(dz.Catalogue_folder)

#Search for objects we want to treat for bias
list_for_bias = dz.observation_dict['Standard_stars'] + dz.observation_dict[
    'objects'] + ['flat', 'arc', 'sky']

#Loop through the arms
colors = ['Blue', 'Red']
for arm_color in colors:

    #Get the files to bias correct
    indeces_arm = (dz.reducDf.ISIARM == '{color} arm'.format(
        color=arm_color)) & (dz.reducDf.file_location.str.contains('raw_fits')
                             ) & dz.reducDf.frame_tag.isin(list_for_bias) & (
                                 dz.reducDf.valid_file)
    frames_type = dz.reducDf.loc[indeces_arm, 'frame_tag'].values
    files_folders = dz.reducDf.loc[indeces_arm, 'file_location'].values
    files_names = dz.reducDf.loc[indeces_arm, 'file_name'].values

    #Get the correction files
コード例 #2
0
    indmin, indmax      = searchsorted(PartialWavelength, (Bot, Top))
     
    LineHeight          = max(PartialIntensity[indmin:indmax])
    LineExpLoc          = median(PartialWavelength[where(PartialIntensity == LineHeight)])
           
    return PartialWavelength, PartialIntensity, LineHeight, LineExpLoc
 
def region_indeces(wave_min, wave_max, wavenlength_range):
     
    low_trim, up_trim   = searchsorted(wavenlength_range, [wave_min, wave_max])
    indeces_array       = array(range(low_trim, up_trim))
     
    return indeces_array

dz = Dazer()
dz_reduc = spectra_reduction()

script_code = dz.get_script_code()
lickIndcs_extension = '_lick_indeces.txt'
 
#Load catalogue dataframe
catalogue_dict = dz.import_catalogue()
catalogue_df = dz.load_excel_DF('/home/vital/Dropbox/Astrophysics/Data/WHT_observations/WHT_Galaxies_properties.xlsx')
image_address = '/home/vital/Dropbox/Astrophysics/Papers/Yp_AlternativeMethods/images/telluric_correction_detail'

SIII_theo = 2.469
H7_H8_ratio_theo = 1.98

#Set figure format
size_dict = {'figure.figsize': (16, 10), 'axes.labelsize':20, 'legend.fontsize':20, 'font.family':'Times New Roman', 'mathtext.default':'regular', 'xtick.labelsize':20, 'ytick.labelsize':20}
dz.FigConf(plotStyle='seaborn-colorblind', plotSize = size_dict, Figtype = 'Grid_size', n_columns = 1, n_rows = 2)
コード例 #3
0
import os
import sys
sys.path.append('/home/vital/git/Dazer/Dazer/dazer/')
os.environ['TCL_LIBRARY'] = '/home/vital/anaconda/python27/lib/tcl8.5'
os.environ['TK_LIBRARY'] = '/home/vital/anaconda/python27/lib/tk8.5'

from DZ_observation_reduction import spectra_reduction
 
#Load iraf pypeline object
dz = spectra_reduction()
   
#Load reduction data frame
dz.declare_catalogue(dz.Catalogue_folder)

#Output tag
data_dict = {'reduc_tag': 'flat_combine_trim'}

#Loop through the arms
colors = ['Blue', 'Red']
for arm_color in colors:
                            
    #Get object and global indeces
    idx_arc = (dz.reducDf.reduc_tag == 'nflatcombine') & (dz.reducDf.ISIARM == '{color} arm'.format(color = arm_color)) & (dz.reducDf.valid_file)   
    
    File_Folder         = dz.reducDf.loc[idx_arc, 'file_location'].values[0]
    File_Name           = dz.reducDf.loc[idx_arc, 'file_name'].values[0]
    File_Name_trim      = File_Name[0:File_Name.find('.')] + '_t.fits'
    
    #Define cropping region
    cropping        = dz.observation_dict[arm_color + '_cropping']
    cropping_region = '[{rawA}:{rawB},{columnA}:{columnB}]'.format(rawA=cropping[0], rawB=cropping[1],columnA=cropping[2], columnB=cropping[3])
コード例 #4
0
        
            GridAxis.plot(x_values_ver, y_values_ver, label = files_name[j], linestyle = line_dict[str(i)], linewidth = 4)
            
        GridAxis.set_xlabel('Pixel', fontsize = font_size)

        GridAxis.set_ylabel('Mean pixel value', fontsize = font_size)
        
    GridAxis.set_title('Extracted spectrum', fontsize = font_size)
    GridAxis.legend(fontsize = font_size)
    
    plt.show()


#Load the catalogues

dz_vit = spectra_reduction()
dz_vit.declare_catalogue(catalogue_address = '/home/vital/Astrodata/WHT_2011_11/Night1/')
dz_ele = spectra_reduction()
dz_ele.declare_catalogue(catalogue_address = '/home/vital/Astrodata/WHT_2011_11/Night1_Elena/')


# #Plot 
# list_files1, list_files2 = ['master_bias_Blue.fits'], ['Zero-blue.fits']
# idx1 = dz_vit.reducDf.file_name.isin(list_files1) & (dz_vit.reducDf.ISIARM == 'Blue arm')
# idx2 = dz_ele.reducDf.file_name.isin(list_files2) & (dz_ele.reducDf.ISIARM == 'Blue arm')
# plotter_4_grid([idx1, idx2], [dz_vit, dz_ele])

#Loop through the files
list_files1, list_files2 = ['r01725595_b.fits', 'flat_combine_Blue.fits' ], ['ccdblue1725595.fits', 'Flat.fits']
list_files1, list_files2 = ['master_bias_Blue_b.fits'], ['Zero-blue.fits']
list_files1, list_files2 = ['flat_combine_Blue.fits'], ['Flat.fits']
コード例 #5
0
                          linestyle=line_dict[str(i)],
                          linewidth=4)

        GridAxis.set_xlabel('Pixel', fontsize=font_size)

        GridAxis.set_ylabel('Mean pixel value', fontsize=font_size)

    GridAxis.set_title('Extracted spectrum', fontsize=font_size)
    GridAxis.legend(fontsize=font_size)

    plt.show()


#Load the catalogues

dz_vit = spectra_reduction()
dz_vit.declare_catalogue(
    catalogue_address='/home/vital/Astrodata/WHT_2011_11/Night1/')
dz_ele = spectra_reduction()
dz_ele.declare_catalogue(
    catalogue_address='/home/vital/Astrodata/WHT_2011_11/Night1_Elena/')

# #Plot
# list_files1, list_files2 = ['master_bias_Blue.fits'], ['Zero-blue.fits']
# idx1 = dz_vit.reducDf.file_name.isin(list_files1) & (dz_vit.reducDf.ISIARM == 'Blue arm')
# idx2 = dz_ele.reducDf.file_name.isin(list_files2) & (dz_ele.reducDf.ISIARM == 'Blue arm')
# plotter_4_grid([idx1, idx2], [dz_vit, dz_ele])

#Loop through the files
list_files1, list_files2 = ['r01725595_b.fits', 'flat_combine_Blue.fits'
                            ], ['ccdblue1725595.fits', 'Flat.fits']
コード例 #6
0
from pandas import read_csv
from dazer_methods import Dazer
from uncertainties import ufloat
from DZ_observation_reduction import spectra_reduction

#Define main class
dz              = Dazer()
dz_sr           = spectra_reduction()
 
#Making the plot:
dz.FigConf()

#Set object and line to measure
objName         = 'IZW18_A1'
extension       = 1
S3_lines        = ['S3_9069A', 'S3_9531A']

#Load catalogue dataframe
catalogue_dict  = dz.import_catalogue()
catalogue_df    = dz.load_excel_DF('/home/vital/Dropbox/Astrophysics/Data/WHT_observations/WHT_Galaxies_properties.xlsx')

lickIndcs_ext   = '_lick_indeces.txt'
ouput_folder    = '{}{}/'.format(catalogue_dict['Obj_Folder'], objName) 
lick_idcs_df    = read_csv(ouput_folder + objName + lickIndcs_ext, delim_whitespace = True, header = 0, index_col = 0, comment='L') #Dirty trick to avoid the Line_label row

#Define fits file:
ratios_dict = {}
for extension in [0, 1]: 
    fits_file                           = '/home/vital/Astrodata/WHT_2016_04/Night1/objects/IZW18_Red_cr_f_t_w_e_{testing_extension}_fglobal.fits'.format(testing_extension=dz_sr.testing_extension)
    #fits_file                           = '/home/vital/Astrodata/WHT_2016_04/Night1/objects/IZW18_Red_cr_f_t_w_bg_e_fglobal.fits'
    redshift_factor                     = 1 + catalogue_df.loc[objName].z_Red