コード例 #1
0
class dasiamrpn(object):
    """
    Wrapper class for incorporating DaSiamRPN into OpenLabeling
    (https://github.com/foolwood/DaSiamRPN,
    https://github.com/Cartucho/OpenLabeling)
    """
    def __init__(self):
        self.net = SiamRPNvot()
        self.net.load_state_dict(torch.load(join(realpath(dirname(__file__)),
            'SiamRPNVOT.model')))
        self.net.eval().cuda()

    def init(self, init_frame, initial_bbox):
        """
        Initialize DaSiamRPN tracker with inital frame and bounding box.
        """
        target_pos, target_sz = self.bbox_to_pos(initial_bbox)
        self.state = SiamRPN_init(
            init_frame, target_pos, target_sz, self.net)

    def update(self, next_image):
        """
        Update bounding box position and size on next_image. Returns True
        beacuse tracking is terminated based on number of frames predicted
        in OpenLabeling, not based on feedback from tracking algorithm (unlike
        the opencv tracking algorithms).
        """
        self.state = SiamRPN_track(self.state, next_image)
        target_pos = self.state["target_pos"]
        target_sz  = self.state["target_sz"]
        bbox = self.pos_to_bbox(target_pos, target_sz)

        return True, bbox

    def bbox_to_pos(self, initial_bbox):
        """
        Convert bounding box format from a tuple format containing
        xmin, ymin, width, and height to a tuple of two arrays which contain
        the x and y coordinates of the center of the box and its width and
        height respectively.
        """
        xmin, ymin, w, h = initial_bbox
        cx = int(xmin + w/2)
        cy = int(ymin + h/2)
        target_pos = np.array([cx, cy])
        target_sz  = np.array([w, h])

        return target_pos, target_sz

    def pos_to_bbox(self, target_pos, target_sz):
        """
        Invert the bounding box format produced in the above conversion
        function.
        """
        w = target_sz[0]
        h = target_sz[1]
        xmin = int(target_pos[0] - w/2)
        ymin = int(target_pos[1] - h/2)

        return xmin, ymin, w, h
コード例 #2
0
ファイル: da_siam_rpn_tracker.py プロジェクト: alvkao58/pylot
 def __init__(self, flags):
     # Initialize the siam network.
     self._logger = erdos.utils.setup_logging(
         'multi_object_da_siam_rpn_trakcer', flags.log_file_name)
     self._siam_net = SiamRPNvot()
     self._siam_net.load_state_dict(torch.load(
         flags.da_siam_rpn_model_path))
     self._siam_net.eval().cuda()
コード例 #3
0
 def __init__(self, flags, logger):
     # Initialize the siam network.
     self._logger = logger
     self._siam_net = SiamRPNvot()
     self._siam_net.load_state_dict(torch.load(
         flags.da_siam_rpn_model_path))
     self._siam_net.eval().cuda()
     self._trackers = []
     self._min_matching_iou = flags.min_matching_iou
     self._max_missed_detections = flags.obstacle_track_max_age
コード例 #4
0
 def __init__(self, flags):
     # Initialize the siam network.
     self._logger = erdos.utils.setup_logging(
         'multi_object_da_siam_rpn_tracker', flags.log_file_name)
     self._siam_net = SiamRPNvot()
     self._siam_net.load_state_dict(torch.load(
         flags.da_siam_rpn_model_path))
     self._siam_net.eval().cuda()
     self._trackers = []
     self._min_matching_iou = flags.min_matching_iou
     self._max_missed_detections = flags.obstacle_track_max_age
コード例 #5
0
class MultiObjectDaSiamRPNTracker(MultiObjectTracker):
    def __init__(self, flags):
        # Initialize the siam network.
        self._siam_net = SiamRPNvot()
        self._siam_net.load_state_dict(torch.load(
            flags.da_siam_rpn_model_path))
        self._siam_net.eval().cuda()

    def reinitialize(self, frame, bboxes):
        # Create a tracker for each bbox.
        self._trackers = []
        for bbox in bboxes:
            self._trackers.append(
                SingleObjectDaSiamRPNTracker(frame, bbox, self._siam_net))
コード例 #6
0
ファイル: dasiamrpn.py プロジェクト: MauroOrlic/dvision
 def __init__(self):
     self.net = SiamRPNvot()
     # check if SiamRPNVOT.model was already downloaded (otherwise download it now)
     model_path = join(realpath(dirname(__file__)), 'DaSiamRPN', 'code',
                       'SiamRPNVOT.model')
     print(model_path)
     if not exists(model_path):
         print(
             '\nError: module not found. Please download the pre-trained model and copy it to the directory \'DaSiamRPN/code/\'\n'
         )
         print(
             '\tdownload link: https://drive.google.com/file/d/1-vNVZxfbIplXHrqMHiJJYWXYWsOIvGsf/view'
         )
         exit()
     self.net.load_state_dict(torch.load(model_path))
     self.net.eval().cuda()
コード例 #7
0
ファイル: dasiamrpn.py プロジェクト: aacitelli/scylla
    def __init__(self):
        self.net = SiamRPNvot()
        # check if SiamRPNVOT.model was already downloaded (otherwise download it now)
        model_path = join(realpath(dirname(__file__)), 'DaSiamRPN', 'code', 'SiamRPNVOT.model')
        print(model_path)
        if not exists(model_path):
            print('\nError: module not found. Please download the pre-trained model and copy it to the directory \'DaSiamRPN/code/\'\n')
            print('\tdownload link: https://github.com/fogx/DaSiamRPN_noCUDA/blob/master/SiamRPNVOT.model')
            exit()
        


        if(torch.cuda.is_available()):
            self.net.load_state_dict(torch.load(model_path))
        else:
            self.net.load_state_dict(torch.load(model_path,map_location='cpu'))
        self.net.eval().to(device)
コード例 #8
0
class MultiObjectDaSiamRPNTracker(MultiObjectTracker):
    def __init__(self, flags):
        # Initialize the siam network.
        self._logger = erdos.utils.setup_logging(
            'multi_object_da_siam_rpn_tracker', flags.log_file_name)
        self._siam_net = SiamRPNvot()
        self._siam_net.load_state_dict(torch.load(
            flags.da_siam_rpn_model_path))
        self._siam_net.eval().cuda()
        self._trackers = []
        self._min_matching_iou = flags.min_matching_iou
        self._max_missed_detections = flags.obstacle_track_max_age

    def initialize(self, frame, obstacles):
        """ Initializes a multiple obstacle tracker.

        Args:
            frame: perception.camera_frame.CameraFrame to reinitialize with.
            obstacles: List of perception.detection.utils.DetectedObstacle.
        """
        # Create a tracker for each obstacle.
        for obstacle in obstacles:
            self._trackers.append(
                SingleObjectDaSiamRPNTracker(frame, obstacle, self._siam_net))

    def reinitialize(self, frame, obstacles):
        """ Renitializes a multiple obstacle tracker.

        Args:
            frame: perception.camera_frame.CameraFrame to reinitialize with.
            obstacles: List of perception.detection.utils.DetectedObstacle.
        """
        # If empty obstacles passed in, continue existing tracks and exit.
        if not obstacles:
            self.track(frame)
            return

        if self._trackers == []:
            self.initialize(frame, obstacles)
        else:
            # Update the bounding boxes so that the matching happens between
            # bounding boxes computed on the same frame.
            self.track(frame, False)
        # Create matrix of similarities between detection and tracker bboxes.
        cost_matrix = self._create_hungarian_cost_matrix(obstacles)
        # Run linear assignment (Hungarian Algo) with matrix.
        row_ids, col_ids = solve_dense(cost_matrix)
        matched_map = {}
        for row_id, col_id in zip(row_ids, col_ids):
            matched_map[self._trackers[col_id].obstacle.id] = row_id
        matched_obstacle_indices, matched_tracker_indices = set(row_ids), set(
            col_ids)

        updated_trackers = []
        # Separate matched and unmatched tracks, obstacles.
        unmatched_tracker_indices, matched_trackers, unmatched_trackers = \
            self._separate_matches_from_unmatched(self._trackers,
                                                  matched_tracker_indices)
        unmatched_obstacle_indices, matched_obstacles, unmatched_obstacles = \
            self._separate_matches_from_unmatched(obstacles,
                                                  matched_obstacle_indices)

        # Add successfully matched trackers to updated_trackers.
        for tracker in matched_trackers:
            tracker.missed_det_updates = 0
            # Update the tracker's internal bounding box. If we don't do
            # this, the tracker's bounding box degrades across the frames until
            # it doesn't overlap with the bounding box the detector outputs.
            tracker.reset_bbox(
                obstacles[matched_map[tracker.obstacle.id]].bounding_box)
            updated_trackers.append(tracker)
        # Add 1 to age of any unmatched trackers, filter old ones.
        for tracker in unmatched_trackers:
            tracker.missed_det_updates += 1
            if tracker.missed_det_updates <= self._max_missed_detections:
                updated_trackers.append(tracker)
            else:
                self._logger.debug("Dropping tracker with id {}".format(
                    tracker.obstacle.id))
        # Initialize trackers for unmatched obstacles.
        for obstacle in unmatched_obstacles:
            updated_trackers.append(
                SingleObjectDaSiamRPNTracker(frame, obstacle, self._siam_net))
        # Keep one tracker per obstacle id; prefer trackers with recent
        # detection updates.
        unique_updated_trackers = {}
        for tracker in updated_trackers:
            if tracker.obstacle.id not in unique_updated_trackers:
                unique_updated_trackers[tracker.obstacle.id] = tracker
            elif (unique_updated_trackers[tracker.obstacle.id].
                  missed_det_updates > tracker.missed_det_updates):
                unique_updated_trackers[tracker.obstacle.id] = tracker

        self._trackers = list(unique_updated_trackers.values())

    def track(self, frame, missed_detection=True):
        """ Tracks obstacles in a frame.

        Args:
            frame: perception.camera_frame.CameraFrame to track in.
        """
        tracked_obstacles = []
        for tracker in self._trackers:
            tracked_obstacles.append(tracker.track(frame))
            if missed_detection:
                tracker.missed_det_updates += 1
        self._trackers = [
            tracker for tracker in self._trackers
            if tracker.missed_det_updates <= self._max_missed_detections
        ]
        return True, tracked_obstacles

    def _create_hungarian_cost_matrix(self, obstacles):
        # Create cost matrix with shape (num_bboxes, num_trackers)
        cost_matrix = [[0 for _ in range(len(self._trackers))]
                       for __ in range(len(obstacles))]
        for i, obstacle in enumerate(obstacles):
            for j, tracker in enumerate(self._trackers):
                obstacle_bbox = obstacle.bounding_box
                tracker_bbox = tracker.obstacle.bounding_box
                iou = obstacle_bbox.calculate_iou(tracker_bbox)
                # If track too far from det, mark pair impossible with np.nan
                if iou >= self._min_matching_iou:
                    cost_matrix[i][j] = iou
                else:
                    cost_matrix[i][j] = np.nan
        return np.array(cost_matrix)

    def _separate_matches_from_unmatched(self, obstacles,
                                         matched_obstacle_indices):
        unmatched_obstacle_indices = \
            set(range(len(obstacles))) - matched_obstacle_indices
        matched_obstacles = [obstacles[i] for i in matched_obstacle_indices]
        unmatched_obstacles = [
            obstacles[i] for i in unmatched_obstacle_indices
        ]
        return unmatched_obstacle_indices, matched_obstacles, unmatched_obstacles
コード例 #9
0
ファイル: dasiamrpn.py プロジェクト: aacitelli/scylla
class dasiamrpn(object):
    """
    Wrapper class for incorporating DaSiamRPN into OpenLabeling
    (https://github.com/foolwood/DaSiamRPN,
    https://github.com/Cartucho/OpenLabeling)
    """

    def __init__(self):
        self.net = SiamRPNvot()
        # check if SiamRPNVOT.model was already downloaded (otherwise download it now)
        model_path = join(realpath(dirname(__file__)), 'DaSiamRPN', 'code', 'SiamRPNVOT.model')
        print(model_path)
        if not exists(model_path):
            print('\nError: module not found. Please download the pre-trained model and copy it to the directory \'DaSiamRPN/code/\'\n')
            print('\tdownload link: https://github.com/fogx/DaSiamRPN_noCUDA/blob/master/SiamRPNVOT.model')
            exit()
        


        if(torch.cuda.is_available()):
            self.net.load_state_dict(torch.load(model_path))
        else:
            self.net.load_state_dict(torch.load(model_path,map_location='cpu'))
        self.net.eval().to(device)
            

    def init(self, init_frame, initial_bbox):
        """
        Initialize DaSiamRPN tracker with inital frame and bounding box.
        """
        target_pos, target_sz = self.bbox_to_pos(initial_bbox)
        self.state = SiamRPN_init(
            init_frame, target_pos, target_sz, self.net)

    def update(self, next_image):
        """
        Update box position and size on next_image. Returns True
        beacuse tracking is terminated based on number of frames predicted
        in OpenLabeling, not based on feedback from tracking algorithm (unlike
        the opencv tracking algorithms).
        """
        self.state = SiamRPN_track(self.state, next_image)
        target_pos = self.state["target_pos"]
        target_sz  = self.state["target_sz"]
        bbox = self.pos_to_bbox(target_pos, target_sz)

        return True, bbox

    def bbox_to_pos(self, initial_bbox):
        """
        Convert bounding box format from a tuple format containing
        xmin, ymin, width, and height to a tuple of two arrays which contain
        the x and y coordinates of the center of the box and its width and
        height respectively.
        """
        xmin, ymin, w, h = initial_bbox
        cx = int(xmin + w/2)
        cy = int(ymin + h/2)
        target_pos = np.array([cx, cy])
        target_sz  = np.array([w, h])

        return target_pos, target_sz

    def pos_to_bbox(self, target_pos, target_sz):
        """
        Invert the bounding box format produced in the above conversion
        function.
        """
        w = target_sz[0]
        h = target_sz[1]
        xmin = int(target_pos[0] - w/2)
        ymin = int(target_pos[1] - h/2)

        return xmin, ymin, w, h
コード例 #10
0
 def __init__(self):
     self.net = SiamRPNvot()
     self.net.load_state_dict(torch.load(join(realpath(dirname(__file__)),
         'SiamRPNVOT.model')))
     self.net.eval().cuda()
コード例 #11
0
ファイル: da_siam_rpn_tracker.py プロジェクト: alvkao58/pylot
class MultiObjectDaSiamRPNTracker(MultiObjectTracker):
    def __init__(self, flags):
        # Initialize the siam network.
        self._logger = erdos.utils.setup_logging(
            'multi_object_da_siam_rpn_trakcer', flags.log_file_name)
        self._siam_net = SiamRPNvot()
        self._siam_net.load_state_dict(torch.load(
            flags.da_siam_rpn_model_path))
        self._siam_net.eval().cuda()

    def reinitialize(self, frame, obstacles):
        """ Reinitializes a multiple obstacle tracker.

        Args:
            frame: perception.camera_frame.CameraFrame to reinitialize with.
            obstacles: List of perception.detection.utils.DetectedObstacle.
        """
        # Create a tracker for each obstacle.
        self._trackers = [
            SingleObjectDaSiamRPNTracker(frame, obstacle, self._siam_net)
            for obstacle in obstacles
        ]

    def reinitialize_new(self, frame, obstacles):
        # Create matrix of similarities between detection and tracker bboxes.
        cost_matrix = self._create_hungarian_cost_matrix(
            frame.frame, obstacles)
        # Run sklearn linear assignment (Hungarian Algo) with matrix
        assignments = linear_assignment(cost_matrix)

        updated_trackers = []
        # Add matched trackers to updated_trackers
        for obstacle_idx, tracker_idx in assignments:
            obstacles[obstacle_idx].id = self._trackers[tracker_idx].obj_id
            updated_trackers.append(
                SingleObjectDaSiamRPNTracker(frame, obstacles[obstacle_idx],
                                             self._siam_net))
        # Add 1 to age of any unmatched trackers, filter old ones
        if len(self._trackers) > len(obstacles):
            for i, tracker in enumerate(self._trackers):
                if i not in assignments[:, 1]:
                    tracker.missed_det_updates += 1
                    if tracker.missed_det_updates < MAX_TRACKER_AGE:
                        updated_trackers.append(tracker)
        # Create new trackers for new bboxes
        elif len(obstacles) > len(self._trackers):
            for i, obstacle in enumerate(obstacles):
                if i not in assignments[:, 0]:
                    updated_trackers.append(
                        SingleObjectDaSiamRPNTracker(frame, obstacle,
                                                     self._siam_net))

        self._trackers = updated_trackers

    def _create_hungarian_cost_matrix(self, frame, obstacles):
        # Create cost matrix with shape (num_bboxes, num_trackers)
        cost_matrix = [[0 for _ in range(len(self._trackers))]
                       for __ in range(len(obstacles))]
        for i, obstacle in enumerate(obstacles):
            for j, tracker in enumerate(self._trackers):
                obstacle_bbox = obstacle.bounding_box
                tracker_bbox = tracker.obstacle.bounding_box
                # Get crops from frame
                self._logger.debug(obstacle_bbox, tracker_bbox)
                bbox_crop = frame[obstacle_bbox.y_min:obstacle_bbox.y_max,
                                  obstacle_bbox.x_min:obstacle_bbox.x_max]
                tracker_bbox_crop = frame[
                    tracker_bbox.y_min:tracker_bbox.y_max,
                    tracker_bbox.x_min:tracker_bbox.x_max]
                # Resize larger crop to same shape as smaller one
                bbox_area = np.prod(bbox_crop.shape[:2])
                tracker_bbox_area = np.prod(tracker_bbox_crop.shape[:2])
                if bbox_area < tracker_bbox_area:
                    self._logger.debug(tracker_bbox_crop.shape)
                    tracker_bbox_crop = cv2.resize(
                        tracker_bbox_crop,
                        bbox_crop.shape[:2]
                        [::-1],  # cv2 needs width, then height
                        interpolation=cv2.INTER_AREA)
                else:
                    self._logger.debug(bbox_crop.shape)
                    bbox_crop = cv2.resize(
                        bbox_crop,
                        tracker_bbox_crop.shape[:2]
                        [::-1],  # cv2 needs width, then height
                        interpolation=cv2.INTER_AREA)
                # Use SSIM as metric for crop similarity, assign to matrix
                self._logger.debug(
                    bbox_crop.shape,
                    tracker_bbox_crop.transpose((1, 0, 2)).shape)
                cost_matrix[i][j] = compare_ssim(bbox_crop,
                                                 tracker_bbox_crop,
                                                 multichannel=True)
        return np.array(cost_matrix)
コード例 #12
0
 def __init__(self, flags):
     # Initialize the siam network.
     self._siam_net = SiamRPNvot()
     self._siam_net.load_state_dict(torch.load(
         flags.da_siam_rpn_model_path))
     self._siam_net.eval().cuda()
コード例 #13
0
ファイル: da_siam_rpn_tracker.py プロジェクト: amandhar/erdos
 def __init__(self, flags):
     # Initialize the siam network.
     self._siam_net = SiamRPNvot()
     self._siam_net.load_state_dict(
         torch.load('dependencies/data/SiamRPNVOT.model'))
     self._siam_net.eval().cuda()
コード例 #14
0
ファイル: da_siam_rpn_tracker.py プロジェクト: mawright/pylot
class MultiObjectDaSiamRPNTracker(MultiObjectTracker):
    def __init__(self, flags):
        # Initialize the siam network.
        self._logger = erdos.utils.setup_logging(
            'multi_object_da_siam_rpn_tracker', flags.log_file_name)
        self._siam_net = SiamRPNvot()
        self._siam_net.load_state_dict(torch.load(
            flags.da_siam_rpn_model_path))
        self._siam_net.eval().cuda()
        self._trackers = []

    def initialize(self, frame, obstacles):
        """ Reinitializes a multiple obstacle tracker.

        Args:
            frame: perception.camera_frame.CameraFrame to reinitialize with.
            obstacles: List of perception.detection.utils.DetectedObstacle.
        """
        # Create a tracker for each obstacle.
        for obstacle in obstacles:
            self._trackers.append(
                SingleObjectDaSiamRPNTracker(frame, obstacle, self._siam_net))

    def reinitialize(self, frame, obstacles):
        if self._trackers == []:
            self.initialize(frame, obstacles)
        # Create matrix of similarities between detection and tracker bboxes.
        cost_matrix = self._create_hungarian_cost_matrix(
            frame.frame, obstacles)
        # Run linear assignment (Hungarian Algo) with matrix
        row_ids, col_ids = solve_dense(cost_matrix)
        matched_obstacle_indices, matched_tracker_indices = set(row_ids), set(
            col_ids)

        updated_trackers = []
        # Separate matched and unmatched tracks
        unmatched_tracker_indices = \
            set(range(len(self._trackers))) - matched_tracker_indices
        matched_trackers = [self._trackers[i] for i in matched_tracker_indices]
        unmatched_trackers = [
            self._trackers[i] for i in unmatched_tracker_indices
        ]
        # Separate matched and unmatched detections
        unmatched_obstacle_indices = \
            set(range(len(obstacles))) - matched_obstacle_indices
        matched_obstacles = [obstacles[i] for i in matched_obstacle_indices]
        unmatched_obstacles = [
            obstacles[i] for i in unmatched_obstacle_indices
        ]

        # Add successfully matched trackers to updated_trackers
        for tracker in matched_trackers:
            tracker.missed_det_updates = 0
            updated_trackers.append(tracker)
        # Add 1 to age of any unmatched trackers, filter old ones
        for tracker in unmatched_trackers:
            tracker.missed_det_updates += 1
            if tracker.missed_det_updates < MAX_MISSED_DETECTIONS:
                updated_trackers.append(tracker)
            else:
                self._logger.debug("Dropping tracker with id {}".format(
                    tracker.obstacle.id))

        for obstacle in unmatched_obstacles:
            updated_trackers.append(
                SingleObjectDaSiamRPNTracker(frame, obstacle, self._siam_net))

        self._trackers = updated_trackers

    def _create_hungarian_cost_matrix(self, frame, obstacles):
        # Create cost matrix with shape (num_bboxes, num_trackers)
        cost_matrix = [[0 for _ in range(len(self._trackers))]
                       for __ in range(len(obstacles))]
        for i, obstacle in enumerate(obstacles):
            for j, tracker in enumerate(self._trackers):
                obstacle_bbox = obstacle.bounding_box
                tracker_bbox = tracker.obstacle.bounding_box
                iou = obstacle_bbox.calculate_iou(tracker_bbox)
                # If track too far from det, mark pair impossible with np.nan
                if iou > ASSOCIATION_THRESHOLD:
                    cost_matrix[i][j] = iou
                else:
                    cost_matrix[i][j] = np.nan
        return np.array(cost_matrix)