def example_calculate_mean_image_and_display(): res = collect_vectors('../data/Landmarks/original', '5', 80) referent = ActiveShapeModel.ReferentModel(res) data_coll = DataCollector(None) res = referent.mean_model() data_coll.read_vector(referent.mean_model()) Plotter.render_landmarks(data_coll)
def example_examine_principal_components(): res = collect_vectors('../data/Landmarks/original', '1', 80) referent = ActiveShapeModel.ReferentModel(res) referent.align() referent.rescale_and_realign() variance = ActiveShapeModel.VarianceModel(referent) variance.obtain_components() components = variance.get_components() eigenvals = variance.get_eigenvalues() shapes = utils.vary_component(referent.mean_shape, components.transpose(), eigenvals, 1, 10) tmpObj = DataCollector(None) Plotter.render_landmarks(referent.mean_shape) for ind in range(len(shapes)): tmpObj.read_vector(shapes[ind, :]) Plotter.render_landmarks(tmpObj)