コード例 #1
0
    def do_POST(self):
        # Parse the form data posted
        form = cgi.FieldStorage(
            fp=self.rfile,
            headers=self.headers,
            environ={'REQUEST_METHOD': 'POST',
                     'CONTENT_TYPE': self.headers['Content-Type'],
                     })

        # Begin the response
        self.send_response(200)
        self.end_headers()

        self.wfile.write('\n')
        message = threading.currentThread().getName()
        self.wfile.write(message)
        self.wfile.write('\n')
        self.wfile.write('Client: %s\n' % str(self.client_address))
        self.wfile.write('Path: %s\n' % self.path)

        user = form['user'].value

        if 'switch' in form:
            switch = form['switch'].value
            DIM.setLearningMode(user, switch)
        else:
            vectortype = form['datatype'].value
            data = json.loads(form['json'].value)

            Runner.Run(data, user, vectortype)
        return
コード例 #2
0
    def detectNetworkAnomalies(passedData, username):
        # Get the trained data set
        trainedData = DatabaseInteractionClass.getNetworkLearnedData(username)
        npTrainedData = np.array(trainedData)

        # Generate the model, and fit the trained data to it
        clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.00005)
        clf.fit(npTrainedData)
        # This should return an array of 1's and -1's (in float64 form), the -1's corresponding to failures
        return clf.predict(passedData)
コード例 #3
0
    def detectProcessAnomalies(passedData, username):
        # Get the trained data set
        trainedData = DatabaseInteractionClass.getProcessLearnedData(username)
        #scaledTrainingData = []
	    #scaledPassedData = []
	    #for point in trainedData:
	    #    scaledTrainingData.append(AnomalyDetectionClass.scalePoint(point))
	    #for point in passedData:
	    #    scaledPassedData.append(AnomalyDetectionClass.scalePoint(point))
        print "in detect process anomalies"
        print "training data:"
        print trainedData
        print "input data:"
        print passedData
        npTrainedData = np.array(trainedData)
        #npTrainedData = np.array(scaledTrainingData)
        # Generate the model, and fit the trained data to it
        clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.00005)
        clf.fit(npTrainedData)
        # This should return an array of 1's and -1's (in float64 form), the -1's corresponding to failures
        return clf.predict(passedData)
コード例 #4
0
 def getLatLong(ipAddress):
     latitude, longitude = DatabaseInteractionClass.getLatLongFromIP(ipAddress)
     return latitude, longitude
コード例 #5
0
from DatabaseInteractionModule import DatabaseInteractionClass as DIM

print DIM.getScore("zlbales")
print DIM.getScore("cbcullen")

print DIM.getPointsProcessed("zlbales")
print DIM.getPointsProcessed("cbcullen")

print DIM.isLearningMode("zlbales")
print DIM.isLearningMode("cbcullen")

#integer version of Zach's IP (129.186.251.4) at time of writing test
print DIM.getLatLongFromIP(2176514820)

#integer version of Google's IP address for DNS server (8.8.8.8)
print DIM.getLatLongFromIP((8 * 256 * 256 * 256) + (8 * 256 * 256) + (8 * 256) + 8)

print DIM.setScore("zlbales", 99, 10)
print DIM.setScore("zlbales", 98, 20)
print DIM.setScore("zlbales", 97, 30)
print DIM.setScore("zlbales", 100, 0)

print DIM.getProcessLearnedData("zlbales")
print DIM.getProcessLearnedData("cbcullen")
print DIM.getProcessLearnedData("unknown")

print DIM.getFileLearnedData("zlbales")
print DIM.getFileLearnedData("cbcullen")
print DIM.getFileLearnedData("unknown")

print DIM.getNetworkLearnedData("zlbales")