コード例 #1
0
ファイル: test.py プロジェクト: sumit-dutta/urgeAI_v3
def normalizeDB():
    women_data =  cdb.getFullData("looksmash_db", "looksmash_women")

    for doc in women_data:
        dn.normalize_data(doc)


    men_data =  cdb.getFullData("looksmash_db", "looksmash_men")
    for doc in men_data:
        dn.normalize_data(doc)

    return "done"


    #cdb.printColVals("Sub_category")

#
#
# with open('../DataFiles/snapdeal_data.json', 'rb') as f:
#     data = f.readlines()
#
# data = map(lambda x: x.rstrip(), data)
# data_json_str = "[" + ','.join(data) + "]"
#
# data = json.loads(data_json_str)
#
#
#
#
#
# scored_data = []
# for curDoc in data:
#
#         if curDoc['Sex'] != "Men":
#             doc = dn.normalize_data(curDoc)
#
#             doc['score'] = re.computeAccentuateScores(doc, userPrefs) + re.computeSkinToneScores(doc, "fair") + re.computeColorScores(doc, colors)
#             #print doc
#             scored_data.append(doc)
#
# sorted_data = sorted(scored_data, key=itemgetter('score'), reverse=True)
#
#
# top10 = itertools.islice(sorted_data, 10)
#
# print "Result"
#
# for doc in top10:
#     print doc
#     file = cStringIO.StringIO(urllib.urlopen(doc["Image"]).read())
#     img = Image.open(file)
#     img.show()
コード例 #2
0
ファイル: phraseParser.py プロジェクト: sumit-dutta/urgeAI_v3
def extractPrefsFromPhrase(phrase):

    mappedAttributes = {}
    standards = []
    colors = [e.value for e in ls.Colors]
    mappedAttributes = mapAttributes(colors, "Colors", mappedAttributes)
    types = [e.value for e in ls.Type]
    occasions = ["Everyday wear", "Regular wear", "Party"]

    subCategories = [e.value for e in ls.Sub_Category]
    mappedAttributes = mapAttributes(subCategories, "Sub_category", mappedAttributes)
    mappedAttributes = mapAttributes(types, "Type", mappedAttributes)
    mappedAttributes = mapAttributes(occasions, "Occasions", mappedAttributes)
    print "here",mappedAttributes

    typeNormalization = cdb.getFullData("looksmash_normalization", "normalization")[0]

    typeMappings = dn.unionDict(nr.types_dict, dn.formatDict(typeNormalization["Type"]))

    standards.extend(occasions)
    standards.extend(colors)
    standards.extend(types)
    standards.extend(subCategories)

    standards = sorted(standards, key=len, reverse=True)



    ltypes = createMapper(types)
    accentuate = ["arms", "bust", "legs", "waist"]
    hide = ["arms", "bust", "stomach", "hips and thighs"]

    mapper = {
        "colors": [],
        "types": [],
        "accentuate": [],
        "hide": [],
        "skinTone": "",
        "bodyType": []

    }

    words = tokenizeImpWords(phrase)
    phrases = []

    phrases.extend(getTrivariates(words))
    phrases.extend(getBivariates(words))
    phrases.extend(words)


    thresholdMatches = thresholdPartialMatches(replaceSynonyms(phrases), standards)
    print thresholdMatches

    result = removeTypeDependency(getMappedAttributes(thresholdMatches, mappedAttributes), typeMappings)
    print "here",result
    return result
コード例 #3
0
def getRatings(record, userPrefs):
    ratings = {"overall": 0, "body type": 0, "skin tone": 0, "message": ""}
    skinTone, smsg = re.computeSkinToneScores(record, userPrefs["skinTone"],
                                              [])
    #print type(skinTone)

    if record[ls.Attributes.Sex.value] == "Women":
        accentuate, amsg = re.computeAccentuateScores(
            record, userPrefs,
            cdb.getFullData("looksmash_rules", "accentuate_women")[0])
        hide = re.computeHideScores(
            record, userPrefs,
            cdb.getFullData("looksmash_rules", "hide")[0])
        #print "A", accentuate
        #print "H", hide
        bodyType = 0.6 * accentuate + 0.4 * hide
        overall = max(.3, float(bodyType + skinTone) / 2)
        message = getRatingMessage(overall)

        ratings["overall"] = overall
        ratings["body type"] = bodyType
        ratings["skin tone"] = skinTone
        ratings["message"] = message

        return ratings

    elif record[ls.Attributes.Sex.value] == "Men":
        bodyType, msg = re.computeAccentuateScoresForMen(
            record, userPrefs,
            cdb.getFullData("looksmash_rules", "accentuate_men")[0])
        #print type(bodyType)
        overall = max(.3, float(bodyType + skinTone) / 2)
        message = getRatingMessage(overall)

        ratings["overall"] = overall
        ratings["body type"] = bodyType
        ratings["skin tone"] = skinTone
        ratings["message"] = message

        return ratings
コード例 #4
0
def getPhraseProducts(userprefs):

    if "gender" not in userprefs.keys():
        userprefs["gender"] = "Female"


    bodyPrefs = {
        "accentuate": {
            "arms": False,
            "bust": False,
            "waist": False,
            "legs" : False
        },

        "bodyType": {
            "Oval": False,
            "Trapezoid": False,
            "Rectangle": False
        },

        "hide": {
            "arms": False,
            "bust": False,
            "stomach": False,
            "hips and thighs": False
        }
    }


    phrase = userprefs["phrase"]
    mappedAttrs = pp.extractPrefsFromPhrase(phrase)

    colors = []
    types = []
    subCats = []
    occasions = []
    scores = cdb.getFullData("looksmash_rules", "accentuate_women")[0]
    scores_men = cdb.getFullData("looksmash_rules", "accentuate_men")[0]
    hideScores = cdb.getFullData("looksmash_rules", "hide")[0]

    if "Colors" in mappedAttrs.keys():
        colors = mappedAttrs["Colors"]

    if "Type" in mappedAttrs.keys():
        types = mappedAttrs["Type"]

    if "Sub_category" in mappedAttrs.keys():
        subCats = mappedAttrs["Sub_category"]

    if "Occasion" in mappedAttrs.keys():
        occasions = mappedAttrs["Occasion"]

    for color in userprefs["colors"]:
        colors.append(color)

    products = cdb.phraseQuery("looksmash_db", ["ShoppersStop"], colors, types, subCats, occasions)

    if userprefs["gender"] == "Female":

        for bodyPart in userprefs["accentuate"]:
            bodyPrefs["accentuate"][bodyPart.lower()] = True

        for bodyPart in userprefs["hide"]:
            bodyPrefs["hide"][bodyPart.lower()] = True


    elif userprefs["gender"] == "Male":
        for bodyType in userprefs["bodyType"]:
            bodyPrefs["bodyType"][bodyType.lower()] = True


    for doc in products:
        accentuateScore, accentuateMsg = re.computeAccentuateScores(doc, bodyPrefs, scores) if userprefs["gender"] == "Female" else re.computeAccentuateScoresForMen(doc, bodyPrefs, scores_men)
        hideScore =  re.computeHideScores(doc, bodyPrefs, hideScores) if userprefs["gender"] == "Female" else 0
        doc["score"] = accentuateScore + hideScore

    feed = sorted(products, key=itemgetter('score'))


    images = {}
    i=0
    for product in feed:
        images[i]={"image" :product["Image"],
                   # "msg" : product["msg"],
                   "url" : product["Url"],
                   "domain": product["Domain"],
                    "score": product["score"],
                   "Color": product["Color"],
                   "Sub_category": product["Sub_category"],
                   "Product Name": product["Product Name"],
                   "Cost": product["Cost"],
                   "Brand": product["Brand"],
                   "Category": product["Category"],
                   }

        if "Neck" in product.keys():
            images[i]["Neck"] = product["Neck"],

        if "Sleeves" in product.keys():
            images[i]["Sleeves"] = product["Sleeves"]

        i = i+1

    return {"result": json.dumps(images)}
コード例 #5
0
import RuleRepository.looksmashStandards as ls
import DatabaseLayer.converseWithDB as cdb
import operator
import random

rules = cdb.getFullData("looksmash_rules", "pairing")[0]
domain = "Jabong"
singleBMs = ["Skirts"]


def getBucket(score):
    if score == 1 or score == .8:
        return 1
    if score == .6:
        return .6
    if score == .4 or score == .2:
        return .2


def createPairFeed(sorted_final):
    grouped_data = {}
    for pair in sorted_final:
        bucket = getBucket(pair["Score"])
        if bucket not in grouped_data.keys():
            grouped_data[bucket] = []

        grouped_data[bucket].append(pair)

    sorted_keys = grouped_data.keys()
    sorted_keys.sort(reverse=True)
コード例 #6
0
def getPairingRules():
    rules = cdb.getFullData("looksmash_rules", "pairing")[0]
    return rules
コード例 #7
0
ファイル: test.py プロジェクト: sumit-dutta/urgeAI_v3
def testFeed(userprefs):
    print userprefs

    accentuateWeight = .7
    colorWeight = .5
    skinToneWeight = .1
    scores = cdb.getFullData("looksmash_rules", "accentuate_women")[0]
    scores_men = cdb.getFullData("looksmash_rules", "accentuate_men")[0]
    hideScores = cdb.getFullData("looksmash_rules", "hide")[0]
    normalization = cdb.getFullData("looksmash_normalization", "normalization")[0]





    bodyPrefs = {
        "accentuate": {
            "arms": False,
            "bust": False,
            "waist": False,
            "legs" : False
        },

        "bodyType": {
            "Oval": False,
            "Trapezoid": False,
            "Rectangle": False
        },

        "hide": {
            "arms": False,
            "bust": False,
            "stomach": False,
            "hips and thighs": False
        }
    }

    colors = userprefs['colors']
    types = userprefs['types']
    skinTone = userprefs['skinTone']
    domains = ["Jabong"]

    if userprefs["gender"] == "Female":

        for bodyPart in userprefs["accentuate"]:
            bodyPrefs["accentuate"][bodyPart] = True

        for bodyPart in userprefs["hide"]:
            bodyPrefs["hide"][bodyPart] = True

        jabong_data =  cdb.getFullDataWithColorsAndTypesFromDomain("looksmash_db", "looksmash_women", domains, ru.getColorList(colors,skinTone), types)


    elif userprefs["gender"] == "Male":
         for bodyType in userprefs["bodyType"]:
            bodyPrefs["bodyType"][bodyType] = True

         jabong_data =  cdb.getFullDataWithColorsAndTypesFromDomain("looksmash_db", "looksmash_men", domains, ru.getColorList(colors,skinTone), types)





    scored_data = []
    grouped_data = {}
    for doc in jabong_data:
        #doc = dn.normalize_data(doc, normalization)
        accentuateScore, accentuateMsg = re.computeAccentuateScores(doc, bodyPrefs, scores) if userprefs["gender"] == "Female" else re.computeAccentuateScoresForMen(doc, bodyPrefs, scores_men)
        hideScore =  re.computeHideScores(doc, bodyPrefs, hideScores) if userprefs["gender"] == "Female" else 0
        colorScore, colorMsg = re.computeColorScores(doc, colors)
        skinToneScore, skinToneMsg = re.computeSkinToneScores(doc,skinTone,colors)

        #print accentuateScore, hideScore, colorScore, skinToneScore

        doc['score'] = accentuateWeight*(accentuateScore + hideScore) + colorWeight*colorScore + skinToneWeight*skinToneScore
        doc['msg'] = me.getMsg(accentuateMsg + colorMsg + skinToneMsg)
        #print doc
        if doc['score'] not in grouped_data.keys():
            grouped_data[doc['score']] = {
                ls.Category.Topwear.value : [],
                ls.Category.Bottomwear.value : [],
                ls.Category.Footwear.value : []
            }

        del doc['_id']
        grouped_data[doc['score']][doc['Category']].append(doc)
        scored_data.append(doc)




    #json.dump(grouped_data, open("grouped.txt",'w'))
    sorted_keys = grouped_data.keys()
    sorted_keys.sort(reverse=True)

    feed = createFeed(sorted_keys, grouped_data)
    #print feed

    images = {}
    i=0
    for product in feed:
        images[i]={"image" :product["Image"],
                   "msg" : product["msg"],
                   "url" : product["Url"],
                   "domain": product["Domain"],
                   "score": product["score"],
                   "Color": product["Color"],
                   "Sub_category": product["Sub_category"],
                   "Product Name": product["Product Name"],
                   "Cost": product["Cost"],
                   "Brand": product["Brand"],
                   "Category": product["Category"],
                   "Test": ""
                   }

        if "Neck" in product.keys():
            images[i]["Neck"] = product["Neck"],

        if "Sleeves" in product.keys():
            images[i]["Sleeves"] = product["Sleeves"]

        if "Pattern" in product.keys():
            images[i]["Pattern"] = product["Pattern"]


        i = i+1


    return {"result": json.dumps(images)}