コード例 #1
0
class StatusWorker(Thread):
	def __init__(self, main_window):
		Thread.__init__(self)
		self._main_window = main_window
		self.d = Datasource()
		self.d.token()
		self.start()
	def run(self):
		while True:
			result = self.d.action("status", {})
			wx.PostEvent(self._main_window, ResultEvent(GET_STATUS_ID, result) )
			time.sleep(1)
コード例 #2
0
class DataWorker(Thread):
	def __init__(self, main_window):
		Thread.__init__(self)
		self._main_window = main_window
		self.d = Datasource()
		self.d.token()
		self.start()
	def run(self):
		while True:
			result = self.d.action("exchange_rate", {})
			wx.PostEvent(self._main_window, ResultEvent(GET_EXCHANGE_RATE_ID, result) )
			time.sleep(1)
コード例 #3
0
def classify_XOR():
    #Load Dataset
    P, T, Ptest, Ttest = dts.loadDataset_XOR()

    input_shape = (P.shape[1], )
    output_shape = T.shape[1]  # Number of Dense neurons at output layer

    ### Build Model
    dendral_neurons = 6
    lr = 0.08971484393708822
    activation = 'tanh'

    model = bm.build_HybridModel_MLNN(dendral_neurons, activation, input_shape,
                                      output_shape)

    [hist, train_time] = bm.train_HybridModel_MLNN(model,
                                                   lr,
                                                   P,
                                                   T,
                                                   Ptest,
                                                   Ttest,
                                                   batch_size=512,
                                                   nb_epoch=100,
                                                   v_verbose=False)

    print("\n\t Dataset XOR: ")

    print("\n\t Classificacion: " + str(hist.history['val_acc'][-1]))

    plt_util.my_plot_train_loss(hist)
コード例 #4
0
    def load_tile(t_query):
        """load a single tile (image)

        Gets the image path from the \
:data:`TileQuery.RUNTIME`. ``IMAGE`` attribute.

        Gets the position of the image with the whole \
volume from :meth:`TileQuery.all_scales`, \
:meth:`TileQuery.tile_origin`, and \
:meth:`TileQuery.blocksize`.

        Arguments
        -----------
        t_query: :class:`TileQuery`
            With file path and image position

        Returns
        --------
        numpy.ndarray
            1/H/W image volume
        """
        # call superclass
        Datasource.load_tile(t_query)
        # Get needed field from t_query
        boss_field = t_query.RUNTIME.IMAGE.SOURCE.BOSS
        # Get parameters from t_query
        tile_start = boss_field.INFO.START.VALUE
        path_dict = boss_field.PATHS.VALUE
        i_z, i_y, i_x = t_query.index_zyx + tile_start

        # Attempt to get path from dictionary
        z_path = path_dict.get(i_z, {})
        if type(z_path) is dict:
            # Get path from dictionary
            path = z_path.get(i_y, {}).get(i_x, '')
        else:
            # Get path from string
            path = z_path.format(column=i_x, row=i_y)

        # Sanity check returns empty tile
        if not len(path) or not os.path.exists(path):
            return []

        # Read the image from the file
        return BossGrid.imread(path)[np.newaxis]
コード例 #5
0
ファイル: BossGrid.py プロジェクト: Rhoana/butterfly
    def load_tile(t_query):
        """load a single tile (image)

        Gets the image path from the \
:data:`TileQuery.RUNTIME`. ``IMAGE`` attribute.

        Gets the position of the image with the whole \
volume from :meth:`TileQuery.all_scales`, \
:meth:`TileQuery.tile_origin`, and \
:meth:`TileQuery.blocksize`.

        Arguments
        -----------
        t_query: :class:`TileQuery`
            With file path and image position

        Returns
        --------
        numpy.ndarray
            1/H/W image volume
        """
        # call superclass
        Datasource.load_tile(t_query)
        # Get needed field from t_query
        boss_field = t_query.RUNTIME.IMAGE.SOURCE.BOSS
        # Get parameters from t_query
        tile_start = boss_field.INFO.START.VALUE
        path_dict = boss_field.PATHS.VALUE
        i_z, i_y, i_x = t_query.index_zyx + tile_start

        # Attempt to get path from dictionary
        z_path = path_dict.get(i_z,{})
        if type(z_path) is dict: 
            # Get path from dictionary
            path = z_path.get(i_y,{}).get(i_x,'')
        else:
            # Get path from string
            path = z_path.format(column=i_x, row=i_y)

        # Sanity check returns empty tile
        if not len(path) or not os.path.exists(path):
            return []

        # Read the image from the file
        return BossGrid.imread(path)[np.newaxis]
コード例 #6
0
ファイル: ImageStack.py プロジェクト: afcarl/butterfly
    def preload_source(t_query):
        """load info from example tile (image)

        Arguments
        -----------
        t_query: :class:`TileQuery`
            Only the file path is needed

        Returns
        --------
        dict
            * :data:`OUTPUT.INFO`.``TYPE.NAME`` -- \
numpy datatype of any given tile
            * :data:`RUNTIME.IMAGE`.``BLOCK.NAME`` -- \
numpy 3x1 array of any given tile shape
            * :data:`OUTPUT.INFO`.``SIZE.NAME`` -- \
numpy 3x1 array of full volume shape
        """
        # read all tifs in tifs folder
        search = os.path.join(t_query.path, '*')
        depth = len(list(glob.glob(search)))
        # Should count files on filesystem
        N_FILES = np.uint32([depth, 1, 1])
        tile_0 = ImageStack.load_tile(t_query)
        # Return empty if can't load first tile
        if not len(tile_0):
            return {}
        # Get properties from example tile
        FILE_SIZE = tile_0.shape
        FULL_SIZE = FILE_SIZE * N_FILES
        DATA_TYPE = str(tile_0.dtype)

        # 'block-size', 'dimensions', and 'data-type'
        k_block = t_query.RUNTIME.IMAGE.BLOCK.NAME
        k_size = t_query.OUTPUT.INFO.SIZE.NAME
        k_type = t_query.OUTPUT.INFO.TYPE.NAME

        # Combine results with parent method
        common = Datasource.preload_source(t_query)
        return dict(
            common, **{
                k_block: np.uint32([FILE_SIZE]),
                k_size: np.uint32(FULL_SIZE),
                k_type: DATA_TYPE,
            })
コード例 #7
0
ファイル: ImageStack.py プロジェクト: Rhoana/butterfly
    def preload_source(t_query):
        """load info from example tile (image)

        Arguments
        -----------
        t_query: :class:`TileQuery`
            Only the file path is needed

        Returns
        --------
        dict
            * :data:`OUTPUT.INFO`.``TYPE.NAME`` -- \
numpy datatype of any given tile
            * :data:`RUNTIME.IMAGE`.``BLOCK.NAME`` -- \
numpy 3x1 array of any given tile shape
            * :data:`OUTPUT.INFO`.``SIZE.NAME`` -- \
numpy 3x1 array of full volume shape
        """
        # read all tifs in tifs folder
        search = os.path.join(t_query.path, '*')
        depth = len(list(glob.glob(search)))
        # Should count files on filesystem
        N_FILES = np.uint32([depth, 1, 1])
        tile_0 = ImageStack.load_tile(t_query)
        # Return empty if can't load first tile
        if not len(tile_0):
            return {}
        # Get properties from example tile
        FILE_SIZE = tile_0.shape
        FULL_SIZE = FILE_SIZE * N_FILES
        DATA_TYPE = str(tile_0.dtype)

        # 'block-size', 'dimensions', and 'data-type'
        k_block = t_query.RUNTIME.IMAGE.BLOCK.NAME
        k_size = t_query.OUTPUT.INFO.SIZE.NAME
        k_type = t_query.OUTPUT.INFO.TYPE.NAME
        
        # Combine results with parent method
        common = Datasource.preload_source(t_query)
        return dict(common, **{
            k_block: np.uint32([FILE_SIZE]),
            k_size: np.uint32(FULL_SIZE),
            k_type: DATA_TYPE,
        })
コード例 #8
0
ファイル: TileSpecs.py プロジェクト: afcarl/butterfly
    def preload_source(t_query):
        """load info from example tile (image)

        Arguments
        -----------
        t_query: :class:`TileQuery`
            Only the file path is needed

        Returns
        --------
        dict
            * :data:`OUTPUT.INFO`.``TYPE.NAME`` -- \
numpy datatype of any given tile
            * :data:`RUNTIME.IMAGE`.``BLOCK.NAME`` -- \
numpy 3x1 array of any given tile shape
            * :data:`OUTPUT.INFO`.``SIZE.NAME`` -- \
numpy 3x1 array of full volume shape
        """
        common = Datasource.preload_source(t_query)
        return common
コード例 #9
0
def classify_2C_5L_Spiral():
    #Load Dataset
    P, T, Ptest, Ttest = dts.loadDataset_Espiral_2Class_N_Loops()

    input_shape = (P.shape[1], )
    output_shape = T.shape[1]  # Number of Dense neurons at output layer

    ### Build Model
    dendral_neurons = 250
    lr = 0.2
    activation = 'tanh'

    batch_size = 512

    model = bm.build_HybridModel_MLNN(dendral_neurons, activation, input_shape,
                                      output_shape)

    [hist, train_time] = bm.train_HybridModel_MLNN(model,
                                                   lr,
                                                   P,
                                                   T,
                                                   Ptest,
                                                   Ttest,
                                                   batch_size=batch_size,
                                                   nb_epoch=1000,
                                                   v_verbose=False)

    print("\n\t Dataset 2 class  5 Loops  spiral : ")

    print("\n\t Classificacion: " + str(hist.history['val_acc'][-1]))

    plt_util.my_plot_train_loss(hist)

    plt_util.plot_decision_boundary_2_class(P,
                                            model,
                                            batch_size,
                                            h=0.05,
                                            half_dataset=True,
                                            expand=0.5,
                                            x_lim=45,
                                            y_lim=45)
コード例 #10
0
ファイル: HDF5.py プロジェクト: Rhoana/butterfly
    def preload_source(t_query):
        """load info from example tile (image)

        Calls :meth:`valid_path` to get filename and \
inner dataset path for the full h5 image volume.

        Then gets three needed values from the given \
path from the :class:`TileQuery` t_query

        Arguments
        -----------
        t_query: :class:`TileQuery`
            Only the file path is needed

        Returns
        --------
        dict
            Will be empty if :meth:`valid_path` finds\
this filname to not give a valid h5 volume.

            * :class:`RUNTIME` ``.IMAGE.BLOCK.NAME``
                (numpy.ndarray) -- 3x1 for any give tile shape
            * :class:`OUTPUT` ``.INFO.TYPE.NAME``
                (str) -- numpy dtype of any given tile
            * :class:`OUTPUT` ``.INFO.SIZE.NAME``
                (numpy.ndarray) -- 3x1 for full volume shape
        """
        # Keyword names
        output = t_query.OUTPUT.INFO
        runtime = t_query.RUNTIME.IMAGE
        k_h5 = runtime.SOURCE.HDF5.NAME
        # Get the max block size in bytes for a single tile
        max_bytes = t_query.RUNTIME.CACHE.MAX_BLOCK.VALUE
        max_bytes = int(max_bytes/64)

        # Check if path is valid
        keywords = HDF5.valid_path(t_query)
        if not keywords:
            return {}

        # Validate highest in z file name and dataset
        filename = keywords[k_h5][-1][0]
        dataset = keywords[k_h5][-1][1]
        offset = keywords[k_h5][-1][2]
        # Load properties from H5 dataset
        with h5py.File(filename,'r') as fd:
            # Get the volume
            vol = fd[dataset]
            # Get a shape for all the files
            shape = np.uint32(vol.shape)
            shape[0] += offset
            ####
            # Get a blockshape as a flat section
            ####
            # Get the bytes for a full slice
            voxel_bytes = np.uint32(vol.dtype.itemsize)
            slice_bytes = voxel_bytes * np.prod(shape[1:])
            # Get the nearest tile size under cache limit
            square_overage = np.ceil(slice_bytes / max_bytes)
            side_scalar = np.ceil(np.sqrt(square_overage))
            # Set the actual blocksize to be under the cache limit
            plane_shape = np.ceil(shape[1:] / side_scalar)
            max_block = np.r_[[64], plane_shape]
            ####
            # Get max blocksizes for different resolutions
            ####
            lo_res = 1
            # Get all block sizes by halving the max block size
            all_blocks = [shape/(2**res) for res in range(lo_res)]
            block_array = np.clip(np.ceil(all_blocks), 1, max_block)
            # return named keywords
            keywords.update({
                runtime.BLOCK.NAME: np.uint32(block_array),
                output.SIZE.NAME: np.uint32(shape),
                output.TYPE.NAME: str(HDF5.dtype(vol)),
            })
        # Combine results with parent method
        common = Datasource.preload_source(t_query)
        return dict(common, **keywords)
コード例 #11
0
ファイル: Mojo.py プロジェクト: Rhoana/butterfly
    def preload_source(t_query):
        """load info from example tile (image)

        Arguments
        -----------
        t_query: :class:`TileQuery`
            Only the file path is needed

        Returns
        --------
        dict
            Will be empty if filename does not give \
a valid mojo directory.

            * :class:`RUNTIME` ``.IMAGE.BLOCK.NAME``
                (numpy.ndarray) -- 3x1 for any give tile shape
            * :class:`OUTPUT` ``.INFO.TYPE.NAME``
                (str) -- numpy dtype of any given tile
            * :class:`OUTPUT` ``.INFO.SIZE.NAME``
                (numpy.ndarray) -- 3x1 for full volume shape
        """
        # Keyword names
        output = t_query.OUTPUT.INFO
        runtime = t_query.RUNTIME.IMAGE
        k_format = runtime.SOURCE.MOJO.FORMAT.NAME

        # Get the name and ending of the target folder
        path_name = t_query.OUTPUT.INFO.PATH.VALUE
        meta_file = os.path.join(path_name, Mojo._meta)

        # Return if no meta file for mojo
        if not os.path.exists(meta_file):
            return {}

        # Load the meta info
        meta_info = ET.parse(meta_file).getroot().attrib

        # Estimate the data type
        n_bytes = int(meta_info['numBytesPerVoxel'])
        dtype = 'uint{}'.format(8 * n_bytes)
        # Get the data file exension
        file_ext = meta_info['fileExtension']
        # Get the block shape and full size
        block_z = meta_info['numVoxelsPerTileZ']
        block_y = meta_info['numVoxelsPerTileY']
        block_x = meta_info['numVoxelsPerTileX']
        full_z = meta_info['numVoxelsZ']
        full_y = meta_info['numVoxelsY']
        full_x = meta_info['numVoxelsX']

        ####
        # Get max blocksizes for different resolutions
        ####
        lo_res = int(meta_info['numTilesW'])
        block_size = [block_z, block_y, block_x]
        # Specify block_size for all resolutions
        block_array = [block_size for res in range(lo_res)]

        # Combine results with parent method
        common = Datasource.preload_source(t_query)
        return dict(common, **{
            runtime.BLOCK.NAME: np.uint32(block_array),
            output.SIZE.NAME: np.uint32([full_z, full_y, full_x]),
            output.TYPE.NAME: dtype,
            k_format: file_ext,
        })
コード例 #12
0
ファイル: BossGrid.py プロジェクト: Rhoana/butterfly
    def preload_source(t_query):
        """load info from example tile (image)

        Then gets three needed values from the given \
path from the :class:`TileQuery` t_query

        Arguments
        -----------
        t_query: :class:`TileQuery`
            Only the file path is needed

        Returns
        --------
        dict
            Will be empty if filename does not give \
a valid json file pointing to the tiff grid.

            * :class:`RUNTIME` ``.IMAGE.BLOCK.NAME``
                (numpy.ndarray) -- 3x1 for any give tile shape
            * :class:`OUTPUT` ``.INFO.TYPE.NAME``
                (str) -- numpy dtype of any given tile
            * :class:`OUTPUT` ``.INFO.SIZE.NAME``
                (numpy.ndarray) -- 3x1 for full volume shape
        """
        # Keyword names
        output = t_query.OUTPUT.INFO
        runtime = t_query.RUNTIME.IMAGE
        boss_field = runtime.SOURCE.BOSS
        info_field = boss_field.INFO
        block_field = info_field.BLOCK
        full_field = info_field.EXTENT
        start_field = info_field.START

        # Get the name and ending of the target file
        filename = t_query.OUTPUT.INFO.PATH.VALUE
        ending = os.path.splitext(filename)[1]

        # Return if the ending is not json
        if ending not in BossGrid._meta_files:
            return {}

        # Return if the path does not exist
        if not os.path.exists(filename):
            return {}

        # Get function to read the metainfo file
        order = BossGrid._meta_files.index(ending)
        reader = BossGrid._read[order]

        # Get information from json file
        with open(filename, 'r') as jd:
            # Get all the filenames
            all_info = reader(jd)
            boss = all_info.get(boss_field.ALL, [])
            info = all_info.get(info_field.NAME, {})
            # Return if no metadata
            if not len(info):
                return {}
            # All the paths
            path_dict = {}
            any_path = None

            # Origin of first tile
            start_info = info.get(start_field.NAME, {})
            start_list = map(start_info.get, start_field.ZYX)
            # Set default first tile origin
            if any([s is None for s in start_list]):
                start_list = start_field.VALUE
            # Extract offset of first tile
            tile_start = np.uint64(start_list)
            any_y, any_x = tile_start[1:]
            
            # Shape of one tile
            block_info = info.get(block_field.NAME, {})
            block_list = map(block_info.get, block_field.ZYX)
            # Return if no block shape
            if not all(block_list):
                return {}

            # Shape of full volume
            full_info = info.get(full_field.NAME)
            full_extent = map(full_info.get, full_field.ZYX)
            # Return if no full extent shape
            if not all(full_extent):
                return {}

            # Block shape as a numpy array
            block_shape = np.uint64(block_list)
            if block_shape.shape != (3,):
                return {}
            # Finally, list all the mip levels
            block_shapes = block_shape[np.newaxis]

            # Full shape as a numpy array
            full_bounds = np.uint64(full_extent)
            if full_bounds.shape != (3,2):
                return {}
            # Finally, get the full shape from extent
            full_shape = np.diff(full_bounds).T[0]

            # All paths in dictionary
            for d in boss: 
                path = d.get(boss_field.PATH, '')
                # Update the maximum value
                z,y,x = map(d.get, boss_field.ZYX)
                z_format = x is None or y is None

                # Set any path
                if not any_path:
                    any_path = path
                    if z_format:
                        any_path = path.format(column=any_x, row=any_y)
                    if not os.path.exists(any_path):
                        any_path = None

                # Allow for simple section formats
                if z_format:
                    path_dict[z] = path
                    continue

                # Allow for specific paths per tile
                if z not in path_dict:
                    path_dict[z] = {
                        y: {
                            x: path
                        }
                    }
                    continue
                # Add column to dictionary
                if y not in path_dict[z]:

                    path_dict[z][y] = {
                        x: path
                    }
                    continue
                # Add row to dictionary
                path_dict[z][y][x] = path

            # Return if no paths
            if not any_path:
                return {}

            # Get the tile size from a tile
            any_tile = BossGrid.imread(any_path)
            any_dtype = str(any_tile.dtype)

            # All keys to follow API
            keywords = {
                start_field.NAME: tile_start,
                boss_field.PATHS.NAME: path_dict,
                runtime.BLOCK.NAME: block_shapes,
                output.SIZE.NAME: full_shape,
                output.TYPE.NAME: any_dtype,
            }

            # Combine results with parent method
            common = Datasource.preload_source(t_query)
            return dict(common, **keywords)
コード例 #13
0
    def preload_source(t_query):
        """load info from example tile (image)

        Arguments
        -----------
        t_query: :class:`TileQuery`
            Only the file path is needed

        Returns
        --------
        dict
            Will be empty if filename does not give \
a valid mojo directory.

            * :class:`RUNTIME` ``.IMAGE.BLOCK.NAME``
                (numpy.ndarray) -- 3x1 for any give tile shape
            * :class:`OUTPUT` ``.INFO.TYPE.NAME``
                (str) -- numpy dtype of any given tile
            * :class:`OUTPUT` ``.INFO.SIZE.NAME``
                (numpy.ndarray) -- 3x1 for full volume shape
        """
        # Keyword names
        output = t_query.OUTPUT.INFO
        runtime = t_query.RUNTIME.IMAGE
        k_format = runtime.SOURCE.MOJO.FORMAT.NAME

        # Get the name and ending of the target folder
        path_name = t_query.OUTPUT.INFO.PATH.VALUE
        meta_file = os.path.join(path_name, Mojo._meta)

        # Return if no meta file for mojo
        if not os.path.exists(meta_file):
            return {}

        # Load the meta info
        meta_info = ET.parse(meta_file).getroot().attrib

        # Estimate the data type
        n_bytes = int(meta_info['numBytesPerVoxel'])
        dtype = 'uint{}'.format(8 * n_bytes)
        # Get the data file exension
        file_ext = meta_info['fileExtension']
        # Get the block shape and full size
        block_z = meta_info['numVoxelsPerTileZ']
        block_y = meta_info['numVoxelsPerTileY']
        block_x = meta_info['numVoxelsPerTileX']
        full_z = meta_info['numVoxelsZ']
        full_y = meta_info['numVoxelsY']
        full_x = meta_info['numVoxelsX']

        ####
        # Get max blocksizes for different resolutions
        ####
        lo_res = int(meta_info['numTilesW'])
        block_size = [block_z, block_y, block_x]
        # Specify block_size for all resolutions
        block_array = [block_size for res in range(lo_res)]

        # Combine results with parent method
        common = Datasource.preload_source(t_query)
        return dict(
            common, **{
                runtime.BLOCK.NAME: np.uint32(block_array),
                output.SIZE.NAME: np.uint32([full_z, full_y, full_x]),
                output.TYPE.NAME: dtype,
                k_format: file_ext,
            })
コード例 #14
0
    def load_tile(t_query):
        """load a single tile (image)

        Gets the image path from the \
:data:`TileQuery.RUNTIME`. ``IMAGE`` attribute.

        Gets the position of the image with the whole \
volume from :meth:`TileQuery.all_scales`, \
:meth:`TileQuery.tile_origin`, and \
:meth:`TileQuery.blocksize`.

        Arguments
        -----------
        t_query: :class:`TileQuery`
            With file path and image position

        Returns
        -----------
        np.ndarray
            An image array that may be as large \
as an entire full resolution slice of \
the whole hdf5 volume. Based on the value \
of :meth:`TileQuery.all_scales`, this array \
will likely be downsampled by to a small fraction \
of the full tile resolution.
        """
        # call superclass
        Datasource.load_tile(t_query)
        # Load data for all the h5 files
        h5_files = t_query.RUNTIME.IMAGE.SOURCE.HDF5.VALUE
        # Get all the z indices and coordinates
        z_stops = list(enumerate(zip(*h5_files)[-1]))
        z_starts = z_stops[::-1]

        # Find the region to crop
        sk, sj, si = t_query.all_scales
        [z0, y0, x0], [z1, y1, x1] = t_query.source_tile_bounds
        # Get the scaled blocksize for the output array
        zb, yb, xb = t_query.blocksize

        # get the right h5 files for the current z index
        start_z = next((i for i, z in z_starts if z <= z0), 0)
        stop_z = next((i for i, z in z_stops if z >= z1), len(z_stops))
        needed_files = [h5_files[zi] for zi in range(start_z, stop_z)]

        ####
        # Load from all needed files
        ####
        dtype = getattr(np, t_query.OUTPUT.INFO.TYPE.VALUE)
        # Make the full volume for all needed file volumes
        full_vol = np.zeros([zb, yb, xb], dtype=dtype)

        # Get the first offset
        offset_0 = needed_files[0][-1]

        # Loop through all needed h5 files
        for h5_file in needed_files:
            # Offset for this file
            z_offset = h5_file[-1]
            # Get input and output start
            iz0 = max(z0 - z_offset, 0)
            # Scale output bounds by z-scale
            oz0 = (z_offset - offset_0) // sk

            # Load the image region from the h5 file
            with h5py.File(h5_file[0]) as fd:
                # read from one file
                vol = fd[h5_file[1]]
                # Get the input and output end-bounds
                iz1 = min(z1 - z_offset, vol.shape[0])
                # Scale the output bounds by the z-scale
                dz = iz1 - iz0
                oz1 = oz0 + dz // sk
                # Get the volume from one file
                file_vol = vol[iz0:iz1:sk, y0:y1:sj, x0:x1:si]
                yf, xf = file_vol.shape[1:]
                # Add the volume to the full volume
                full_vol[oz0:oz1, :yf, :xf] = file_vol

        # Combined from all files
        return full_vol
コード例 #15
0
    def preload_source(t_query):
        """load info from example tile (image)

        Calls :meth:`valid_path` to get filename and \
inner dataset path for the full h5 image volume.

        Then gets three needed values from the given \
path from the :class:`TileQuery` t_query

        Arguments
        -----------
        t_query: :class:`TileQuery`
            Only the file path is needed

        Returns
        --------
        dict
            Will be empty if :meth:`valid_path` finds\
this filname to not give a valid h5 volume.

            * :class:`RUNTIME` ``.IMAGE.BLOCK.NAME``
                (numpy.ndarray) -- 3x1 for any give tile shape
            * :class:`OUTPUT` ``.INFO.TYPE.NAME``
                (str) -- numpy dtype of any given tile
            * :class:`OUTPUT` ``.INFO.SIZE.NAME``
                (numpy.ndarray) -- 3x1 for full volume shape
        """
        # Keyword names
        output = t_query.OUTPUT.INFO
        runtime = t_query.RUNTIME.IMAGE
        k_h5 = runtime.SOURCE.HDF5.NAME
        # Get the max block size in bytes for a single tile
        max_bytes = t_query.RUNTIME.CACHE.MAX_BLOCK.VALUE
        max_bytes = int(max_bytes / 64)

        # Check if path is valid
        keywords = HDF5.valid_path(t_query)
        if not keywords:
            return {}

        # Validate highest in z file name and dataset
        filename = keywords[k_h5][-1][0]
        dataset = keywords[k_h5][-1][1]
        offset = keywords[k_h5][-1][2]
        # Load properties from H5 dataset
        with h5py.File(filename, 'r') as fd:
            # Get the volume
            vol = fd[dataset]
            # Get a shape for all the files
            shape = np.uint32(vol.shape)
            shape[0] += offset
            ####
            # Get a blockshape as a flat section
            ####
            # Get the bytes for a full slice
            voxel_bytes = np.uint32(vol.dtype.itemsize)
            slice_bytes = voxel_bytes * np.prod(shape[1:])
            # Get the nearest tile size under cache limit
            square_overage = np.ceil(slice_bytes / max_bytes)
            side_scalar = np.ceil(np.sqrt(square_overage))
            # Set the actual blocksize to be under the cache limit
            plane_shape = np.ceil(shape[1:] / side_scalar)
            max_block = np.r_[[64], plane_shape]
            ####
            # Get max blocksizes for different resolutions
            ####
            lo_res = 1
            # Get all block sizes by halving the max block size
            all_blocks = [shape / (2**res) for res in range(lo_res)]
            block_array = np.clip(np.ceil(all_blocks), 1, max_block)
            # return named keywords
            keywords.update({
                runtime.BLOCK.NAME: np.uint32(block_array),
                output.SIZE.NAME: np.uint32(shape),
                output.TYPE.NAME: str(HDF5.dtype(vol)),
            })
        # Combine results with parent method
        common = Datasource.preload_source(t_query)
        return dict(common, **keywords)
コード例 #16
0
	def OnInit(self):
		self.res = xrc.XmlResource('gui.xrc')
		self.init_frame()
		self.d = Datasource()
		self.d.token()
		return True
コード例 #17
0
	def __init__(self, main_window):
		Thread.__init__(self)
		self._main_window = main_window
		self.d = Datasource()
		self.d.token()
		self.start()
コード例 #18
0
ファイル: HDF5.py プロジェクト: Rhoana/butterfly
    def load_tile(t_query):
        """load a single tile (image)

        Gets the image path from the \
:data:`TileQuery.RUNTIME`. ``IMAGE`` attribute.

        Gets the position of the image with the whole \
volume from :meth:`TileQuery.all_scales`, \
:meth:`TileQuery.tile_origin`, and \
:meth:`TileQuery.blocksize`.

        Arguments
        -----------
        t_query: :class:`TileQuery`
            With file path and image position

        Returns
        -----------
        np.ndarray
            An image array that may be as large \
as an entire full resolution slice of \
the whole hdf5 volume. Based on the value \
of :meth:`TileQuery.all_scales`, this array \
will likely be downsampled by to a small fraction \
of the full tile resolution.
        """
        # call superclass
        Datasource.load_tile(t_query)
        # Load data for all the h5 files
        h5_files = t_query.RUNTIME.IMAGE.SOURCE.HDF5.VALUE
        # Get all the z indices and coordinates
        z_stops = list(enumerate(zip(*h5_files)[-1]))
        z_starts = z_stops[::-1]

        # Find the region to crop
        sk,sj,si = t_query.all_scales
        [z0,y0,x0],[z1,y1,x1] = t_query.source_tile_bounds
        # Get the scaled blocksize for the output array
        zb,yb,xb = t_query.blocksize

        # get the right h5 files for the current z index
        start_z = next((i for i, z in z_starts if z <= z0), 0)
        stop_z = next((i for i, z in z_stops if z >= z1), len(z_stops))
        needed_files = [h5_files[zi] for zi in range(start_z, stop_z)]

        ####
        # Load from all needed files
        ####
        dtype = getattr(np, t_query.OUTPUT.INFO.TYPE.VALUE)
        # Make the full volume for all needed file volumes
        full_vol = np.zeros([zb, yb, xb], dtype = dtype)

        # Get the first offset
        offset_0 = needed_files[0][-1]

        # Loop through all needed h5 files
        for h5_file in needed_files:
            # Offset for this file
            z_offset = h5_file[-1]
            # Get input and output start
            iz0 = max(z0 - z_offset, 0)
            # Scale output bounds by z-scale
            oz0 = (z_offset - offset_0) // sk

            # Load the image region from the h5 file
            with h5py.File(h5_file[0]) as fd:
                # read from one file
                vol = fd[h5_file[1]]
                # Get the input and output end-bounds
                iz1 = min(z1 - z_offset, vol.shape[0])
                # Scale the output bounds by the z-scale
                dz = iz1 - iz0
                oz1 = oz0 + dz // sk
                # Get the volume from one file
                file_vol = vol[iz0:iz1:sk, y0:y1:sj, x0:x1:si]
                yf, xf = file_vol.shape[1:]
                # Add the volume to the full volume
                full_vol[oz0:oz1,:yf,:xf] = file_vol

        # Combined from all files
        return full_vol
コード例 #19
0
    def preload_source(t_query):
        """load info from example tile (image)

        Then gets three needed values from the given \
path from the :class:`TileQuery` t_query

        Arguments
        -----------
        t_query: :class:`TileQuery`
            Only the file path is needed

        Returns
        --------
        dict
            Will be empty if filename does not give \
a valid json file pointing to the tiff grid.

            * :class:`RUNTIME` ``.IMAGE.BLOCK.NAME``
                (numpy.ndarray) -- 3x1 for any give tile shape
            * :class:`OUTPUT` ``.INFO.TYPE.NAME``
                (str) -- numpy dtype of any given tile
            * :class:`OUTPUT` ``.INFO.SIZE.NAME``
                (numpy.ndarray) -- 3x1 for full volume shape
        """
        # Keyword names
        output = t_query.OUTPUT.INFO
        runtime = t_query.RUNTIME.IMAGE
        boss_field = runtime.SOURCE.BOSS
        info_field = boss_field.INFO
        block_field = info_field.BLOCK
        full_field = info_field.EXTENT
        start_field = info_field.START

        # Get the name and ending of the target file
        filename = t_query.OUTPUT.INFO.PATH.VALUE
        ending = os.path.splitext(filename)[1]

        # Return if the ending is not json
        if ending not in BossGrid._meta_files:
            return {}

        # Return if the path does not exist
        if not os.path.exists(filename):
            return {}

        # Get function to read the metainfo file
        order = BossGrid._meta_files.index(ending)
        reader = BossGrid._read[order]

        # Get information from json file
        with open(filename, 'r') as jd:
            # Get all the filenames
            all_info = reader(jd)
            boss = all_info.get(boss_field.ALL, [])
            info = all_info.get(info_field.NAME, {})
            # Return if no metadata
            if not len(info):
                return {}
            # All the paths
            path_dict = {}
            any_path = None

            # Origin of first tile
            start_info = info.get(start_field.NAME, {})
            start_list = map(start_info.get, start_field.ZYX)
            # Set default first tile origin
            if any([s is None for s in start_list]):
                start_list = start_field.VALUE
            # Extract offset of first tile
            tile_start = np.uint64(start_list)
            any_y, any_x = tile_start[1:]

            # Shape of one tile
            block_info = info.get(block_field.NAME, {})
            block_list = map(block_info.get, block_field.ZYX)
            # Return if no block shape
            if not all(block_list):
                return {}

            # Shape of full volume
            full_info = info.get(full_field.NAME)
            full_extent = map(full_info.get, full_field.ZYX)
            # Return if no full extent shape
            if not all(full_extent):
                return {}

            # Block shape as a numpy array
            block_shape = np.uint64(block_list)
            if block_shape.shape != (3, ):
                return {}
            # Finally, list all the mip levels
            block_shapes = block_shape[np.newaxis]

            # Full shape as a numpy array
            full_bounds = np.uint64(full_extent)
            if full_bounds.shape != (3, 2):
                return {}
            # Finally, get the full shape from extent
            full_shape = np.diff(full_bounds).T[0]

            # All paths in dictionary
            for d in boss:
                path = d.get(boss_field.PATH, '')
                # Update the maximum value
                z, y, x = map(d.get, boss_field.ZYX)
                z_format = x is None or y is None

                # Set any path
                if not any_path:
                    any_path = path
                    if z_format:
                        any_path = path.format(column=any_x, row=any_y)
                    if not os.path.exists(any_path):
                        any_path = None

                # Allow for simple section formats
                if z_format:
                    path_dict[z] = path
                    continue

                # Allow for specific paths per tile
                if z not in path_dict:
                    path_dict[z] = {y: {x: path}}
                    continue
                # Add column to dictionary
                if y not in path_dict[z]:

                    path_dict[z][y] = {x: path}
                    continue
                # Add row to dictionary
                path_dict[z][y][x] = path

            # Return if no paths
            if not any_path:
                return {}

            # Get the tile size from a tile
            any_tile = BossGrid.imread(any_path)
            any_dtype = str(any_tile.dtype)

            # All keys to follow API
            keywords = {
                start_field.NAME: tile_start,
                boss_field.PATHS.NAME: path_dict,
                runtime.BLOCK.NAME: block_shapes,
                output.SIZE.NAME: full_shape,
                output.TYPE.NAME: any_dtype,
            }

            # Combine results with parent method
            common = Datasource.preload_source(t_query)
            return dict(common, **keywords)
コード例 #20
0
class BitcoinATM(wx.App):

	def OnInit(self):
		self.res = xrc.XmlResource('gui.xrc')
		self.init_frame()
		self.d = Datasource()
		self.d.token()
		return True
	def init_frame(self):
		self.frame = self.res.LoadFrame(None, 'mainFrame')
		self.scanPanel = xrc.XRCCTRL(self.frame, 'scanPanel')
		self.insertPanel = xrc.XRCCTRL(self.frame, 'insertPanel')
		self.insertPanel.GetParent().GetSizer().Hide(self.insertPanel)
		self.insertPanel.GetParent().GetSizer().Layout()
		self.boughtPanel = xrc.XRCCTRL(self.frame, 'boughtPanel')
		self.boughtPanel.GetParent().GetSizer().Hide(self.boughtPanel)
		self.boughtPanel.GetParent().GetSizer().Layout()

		self.next_btn = xrc.XRCCTRL(self.scanPanel, 'next');
		self.buy_btn = xrc.XRCCTRL(self.insertPanel, 'buy');
		self.again_btn = xrc.XRCCTRL(self.boughtPanel, 'again');

		self.service_status_label = xrc.XRCCTRL(self.scanPanel, 'service_status_label');
		self.alert_bar = xrc.XRCCTRL(self.insertPanel, 'alert_bar')
		self.price_label = xrc.XRCCTRL(self.scanPanel, 'price_label')
		self.identity_textbox = xrc.XRCCTRL(self.scanPanel, 'identity')
		self.identity_textbox.SetFocus()
		self.amount_inserted_label = xrc.XRCCTRL(self.insertPanel, 'amount_inserted_label')
		self.qr_code_image = xrc.XRCCTRL(self.boughtPanel, 'qr_code_image')

		self.frame.Bind(wx.EVT_BUTTON, self.OnScanned, id=xrc.XRCID('next') )
		self.frame.Bind(wx.EVT_BUTTON, self.OnBuy, id=xrc.XRCID('buy') )
		self.frame.Bind(wx.EVT_BUTTON, self.OnAgain, id=xrc.XRCID('again') )
		self.Connect(-1, -1, GET_EXCHANGE_RATE_ID, self.GetExchangeRate)
		self.Connect(-1, -1, GET_INSERTED_AMOUNT_ID, self.GetInsertedAmount)
		self.Connect(-1, -1, GET_STATUS_ID, self.GetServiceStatus)
		StatusWorker(self)
		DataWorker(self)
		self.frame.Show()
	def OnScanned(self, event):
		self.scanPanel.GetParent().GetSizer().Hide(self.scanPanel)
		self.scanPanel.GetParent().GetSizer().Layout()
		self.insertPanel.GetParent().GetSizer().Show(self.insertPanel)
		self.insertPanel.GetParent().GetSizer().Layout()
		try:
			self.acceptor = Acceptor(self)
		except IOError as e:
			print e
		except:
			raise
	def OnBuy(self, event):
		try:
			self.acceptor.abort()
		except AttributeError as e:
			print e
		# send request to bitcoin api and get bitcoin private key
		#
		amount = self.amount_inserted_label.GetLabel()
		result = self.d.action("exchange", {'amount': amount} )
		if(result['meta']['code'] != 200):
			self.alert_bar.SetLabel(result['meta']['status'])
			self.alert_bar.SetForegroundColour("red");
		else:
			self.CreateQR(result['wif'])
			self.insertPanel.GetParent().GetSizer().Hide(self.insertPanel)
			self.insertPanel.GetParent().GetSizer().Layout()
			self.boughtPanel.GetParent().GetSizer().Show(self.boughtPanel)
			self.boughtPanel.GetParent().GetSizer().Layout()
			self.amount_inserted_label.SetLabel("")
	def OnAgain(self, event):
		self.boughtPanel.GetParent().GetSizer().Hide(self.boughtPanel)
		self.scanPanel.GetParent().GetSizer().Layout()
		self.scanPanel.GetParent().GetSizer().Show(self.scanPanel)
		self.boughtPanel.GetParent().GetSizer().Layout()
	def CreateQR(self, string):
		qr = QRCode(version=1, box_size=3, border=1)
		qr.add_data(string)
		qr.make(fit=True)

		im = qr.make_image()
		qrfile = os.path.join("tmp", str(time.time() ) + ".png")
		image = open(qrfile, 'wb')
		im.save(image, "PNG")
		self.qr_code_image.SetBitmap(wx.BitmapFromImage(wx.Image(qrfile, wx.BITMAP_TYPE_ANY) ) )
	def GetExchangeRate(self, event):
		self.price_label.SetLabel(str(event.data['exchange_rate']) )
	def GetInsertedAmount(self, event):
		self.amount_inserted_label.SetLabel(str(event.data) )
	def GetServiceStatus(self, event):
		self.service_status_label.SetLabel("Status: " + str(event.data['meta']['status']) )
		if(event.data['meta']['code'] != 200):
			self.next_btn.Disable()
			self.buy_btn.Disable()
			self.again_btn.Disable()