コード例 #1
0
def indep_energy_block(x, ccoords, beta, x_row_splits):
    x = StopGradient()(x)
    ccoords = StopGradient()(ccoords)
    beta = StopGradient()(beta)
    feat = [x]

    sx, psrs, sids, asso_idx, belongs_to_prs = CondensateToPseudoRS(
        radius=0.8, soft=True, threshold=0.1)([x, ccoords, beta, x_row_splits])

    sx = Concatenate()([RaggedSumAndScatter()([sx, psrs, belongs_to_prs]), sx])
    feat.append(VertexScatterer()([sx, sids, sx]))

    sx, _ = FusedRaggedGravNetLinParse(n_neighbours=128,
                                       n_dimensions=4,
                                       n_filters=64,
                                       n_propagate=[32, 32, 32, 32],
                                       name='gravnet_enblock_prs')([sx, psrs])

    x = VertexScatterer()([sx, sids, sx])
    feat.append(x)
    x, _ = FusedRaggedGravNetLinParse(
        n_neighbours=128,
        n_dimensions=4,
        n_filters=64,
        n_propagate=[32, 32, 32, 32],
        name='gravnet_enblock_last')([x, x_row_splits])
    feat.append(x)
    x = Concatenate()(feat)

    x = Dense(64, activation='elu', name="dense_last_enblock_1")(x)
    x = Dense(64, activation='elu', name="dense_last_enblock_2")(x)
    energy = Dense(1, activation=None, name="dense_enblock_final")(x)
    energy = energy  #linear
    return energy
コード例 #2
0
def indep_energy_block2(x,
                        energy,
                        ccoords,
                        beta,
                        x_row_splits,
                        energy_proxy=None,
                        stopxgrad=True):
    if stopxgrad:
        x = StopGradient()(x)
    energy = StopGradient()(energy)
    ccoords = StopGradient()(ccoords)
    beta = StopGradient()(beta)
    feat = [x]

    x = Dense(64, activation='elu', name="dense_last_start_enblock_1")(x)
    x = Dense(64, activation='elu', name="dense_last_start_enblock_2")(x)
    x = Concatenate()([energy, x])

    sx, psrs, sids, asso_idx, belongs_to_prs = CondensateToPseudoRS(
        radius=0.8, soft=True, threshold=0.2)([x, ccoords, beta, x_row_splits])

    sx = Dense(128, activation='elu', name="dense_set_sum_input")(sx)
    sx = Dense(128, activation='elu', name="dense_set_sum_input_b")(sx)
    sx = Dense(128, activation='elu', name="dense_set_sum_input_c")(sx)

    #deep set like approach
    sx = Concatenate()([RaggedSumAndScatter()([sx, psrs, belongs_to_prs]), sx])

    feat.append(VertexScatterer()([sx, sids, sx]))

    sx, _ = FusedRaggedGravNetLinParse(n_neighbours=128,
                                       n_dimensions=4,
                                       n_filters=64,
                                       n_propagate=[32, 32, 32, 32],
                                       name='gravnet_enblock_prs')([sx, psrs])

    x = VertexScatterer()([sx, sids, sx])
    feat.append(x)
    x = Concatenate()([x, energy])
    x, _ = FusedRaggedGravNetAggAtt(
        n_neighbours=256,
        n_dimensions=4,
        n_filters=64,
        n_propagate=[32, 32, 32, 32],
        name='gravnet_enblock_last')([x, x_row_splits, beta])
    feat.append(x)
    x = Concatenate()(feat)

    x = Dense(64, activation='elu', name="dense_last_enblock_1")(x)
    x = Dense(64, activation='elu', name="dense_last_enblock_2")(x)
    #energy = None

    energy = Dense(1, activation=None, name="predicted_energy")(x)

    return energy
コード例 #3
0
def gravnet_model(Inputs, feature_dropout=-1., addBackGatherInfo=True):

    ######## pre-process all inputs and create global indices etc. No DNN actions here

    feat, t_idx, t_energy, t_pos, t_time, t_pid, row_splits = td.interpretAllModelInputs(
        Inputs)

    # feat = Lambda(lambda x: tf.squeeze(x,axis=1)) (feat)

    #tf.print([(t.shape, t.name) for t in [feat,  t_idx, t_energy, t_pos, t_time, t_pid, row_splits]])

    #feat,  t_idx, t_energy, t_pos, t_time, t_pid = NormalizeInputShapes()(
    #    [feat,  t_idx, t_energy, t_pos, t_time, t_pid]
    #    )

    orig_t_idx, orig_t_energy, orig_t_pos, orig_t_time, orig_t_pid, orig_row_splits = t_idx, t_energy, t_pos, t_time, t_pid, row_splits
    gidx_orig = CreateGlobalIndices()(feat)

    _, row_splits = RaggedConstructTensor()([feat, row_splits])
    rs = row_splits

    feat_norm = ProcessFeatures()(
        feat)  #get rid of unit scalings, almost normalise
    feat_norm = BatchNormalization(momentum=0.6)(feat_norm)
    x = feat_norm

    energy = SelectFeatures(0, 1)(feat)
    time = SelectFeatures(8, 9)(feat)
    orig_coords = SelectFeatures(5, 8)(feat_norm)

    ######## create output lists

    allfeat = []

    backgatheredids = []
    gatherids = []
    backgathered = []
    backgathered_coords = []

    ####### create simple first coordinate transformation explicitly (time critical)

    #trans_coords = ManualCoordTransform()(orig_coords)
    coords = orig_coords
    coords = Dense(3,
                   use_bias=False,
                   kernel_initializer=tf.keras.initializers.Identity())(coords)

    nidx, dist = KNN(K=48)([coords, rs])

    first_nidx = nidx
    first_dist = dist
    first_coords = coords

    dist = LocalDistanceScaling(max_scale=10.)([dist, Dense(1)(x)])

    x_mp = DistanceWeightedMessagePassing([32, 16, 8])([x, nidx, dist])
    x_mp = Dense(32, activation='elu')(x_mp)
    x_mp = BatchNormalization(momentum=0.6)(x_mp)
    x = Concatenate()([x, x_mp])

    ###### collect information about the surrounding energy and time distributions per vertex ###
    ncov = Dense(4, kernel_initializer=tf.keras.initializers.Identity())(
        Concatenate()([energy, time, x]))
    ncov = NeighbourCovariance()([coords, dist, ncov, nidx])
    ncov = Dense(24, activation='elu', name='pre_dense_ncov_c')(ncov)
    ncov = BatchNormalization(momentum=0.6)(ncov)
    #should be enough for PCA, total info: 2 * (9+3)

    ##### put together and process ####

    x = Concatenate()([x, x_mp, ncov])
    #x = Dense(64, activation='elu',name='pre_dense_a')(x)
    x = Dense(64, activation='elu', name='pre_dense_b')(x)

    ####### add first set of outputs to output lists

    allfeat.append(x)
    backgathered_coords.append(coords)

    total_iterations = 5

    sel_gidx = gidx_orig

    for i in range(total_iterations):

        ###### reshape the graph to fewer vertices ####

        hier = Dense(1)(x)
        #narrow the local scaling down at each iteration as the coords become more abstract
        dist = LocalDistanceScaling(max_scale=10.)(
            [dist, Dense(1)(Concatenate()([x, dist]))])

        x_cl, rs, bidxs, sel_gidx, energy, x, t_idx, coords = LocalClusterReshapeFromNeighbours(
            K=6,
            radius=
            0.2,  #doesn't really have an effect because of local distance scaling
            print_reduction=True,
            loss_enabled=True,
            loss_scale=1.,
            loss_repulsion=0.4,
            print_loss=True,
            name='clustering_' + str(i))([
                x, dist, hier, nidx, rs, sel_gidx, energy, x, t_idx, coords,
                t_idx
            ])  #last is truth index used by layer

        gatherids.append(bidxs)

        energy = ReduceSumEntirely()(energy)

        #use EdgeConv operation to determine cluster properties
        if True or i:  #only after second iteration because of OOM
            x_cl = Reshape([-1, x.shape[-1]])(x_cl)  #get to shape V x K x F
            x_cl = EdgeConvStatic([64, 64, 64],
                                  add_mean=True,
                                  name="ec_static_" + str(i))(x_cl)
            x_cl = Concatenate()([x, x_cl])

        x = Concatenate()([x_cl, StopGradient()(coords)])

        x = Dense(64, activation='elu', name='dense_clc0_' + str(i))(x)
        x = Dense(64, activation='elu', name='dense_clc1_' + str(i))(x)

        x = BatchNormalization(momentum=0.6)(x)
        #notice last relu for feature weighting later

        ### now these are the new cluster features, up for the next iteration of building new latent space
        #x = RaggedGlobalExchange()([x,rs])

        x_gn, coords, nidx, dist = RaggedGravNet(
            n_neighbours=64 + 32 * i,
            n_dimensions=3,
            n_filters=64,
            n_propagate=64,
            return_self=True)([Concatenate()([coords, x]), rs])

        ng_coords = StopGradient()(coords)
        ng_dist = StopGradient()(dist)

        x_gn = Dense(32, activation='elu')(x_gn)

        ### add neighbour summary statistics
        #dist = LocalDistanceScaling(max_scale=10.)([dist, Dense(1)(x_gn)])

        x_ncov = Dense(16)(x)
        x_ncov = NeighbourCovariance()([ng_coords, ng_dist, x_ncov, nidx])
        x_ncov = Dense(64, activation='elu',
                       name='dense_ncov_a_' + str(i))(x_ncov)
        x_ncov = Dense(64, activation='elu',
                       name='dense_ncov_b_' + str(i))(x_ncov)
        x_ncov = BatchNormalization(momentum=0.6)(x_ncov)

        ### with all this information perform a few message passing steps
        x_mp = x
        x_mp = DistanceWeightedMessagePassing([32, 16,
                                               8])([x_mp, nidx, ng_dist])
        x_mp = Dense(64, activation='elu')(x_mp)
        x_mp = Dense(32, activation='elu')(x_mp)
        x_mp = BatchNormalization(momentum=0.6)(x_mp)

        x = Concatenate()([x, x_mp, x_ncov, x_gn, ng_coords, ng_dist])

        ##### prepare output of this iteration

        x = Dense(64, activation='elu', name='dense_out_a_' + str(i))(x)
        x = Dense(64, activation='elu', name='dense_out_b_' + str(i))(x)
        x = BatchNormalization(momentum=0.6)(x)

        #### compress further for output, but forward fill 64 feature x to next iteration

        x_r = Dense(32, activation='elu', name='dense_out_c_' + str(i))(x)
        #x_r = Concatenate()([x_r, ng_coords, ng_dist])

        #x_r = Concatenate()([StopGradient()(coords),x_r]) ## add coordinates, might come handy for cluster space

        if i >= total_iterations - 1:
            energy = MultiBackGather()(
                [energy,
                 gatherids])  #assign energy sum to all cluster components

        allfeat.append(MultiBackGather()([x_r, gatherids]))
        backgatheredids.append(MultiBackGather()([sel_gidx, gatherids]))
        backgathered_coords.append(MultiBackGather()([coords, gatherids]))

    x = Concatenate(name='allconcat')(allfeat)
    x = RaggedGlobalExchange()([x, row_splits])
    x = Dense(256, activation='elu', name='globalexdense')(x)
    x = RaggedGlobalExchange()([x, row_splits])

    x = Dense(128, activation='elu', name='alldense')(x)
    x = Dense(64, activation='elu')(x)
    x = Dense(32, activation='elu')(x)
    x = Concatenate()([first_coords, x])
    x = BatchNormalization(momentum=0.6)(x)

    pred_beta, pred_ccoords, pred_energy, pred_pos, pred_time, pred_id = create_outputs(
        x, feat)

    #
    #
    # double scale phase transition with linear beta + qmin
    #  -> more high beta points, but: payload loss will still scale one
    #     (or two, but then doesn't matter)
    #

    pred_beta = LLFullObjectCondensation(
        print_loss=True,
        energy_loss_weight=1e-5,
        position_loss_weight=1e-5,  #seems broken
        timing_loss_weight=1e-5,  #1e-3,
        beta_loss_scale=3.,
        repulsion_scaling=1.,
        q_min=2.0,
        use_average_cc_pos=False,
        use_energy_weights=True,
        prob_repulsion=True,
        phase_transition=True,
        phase_transition_double_weight=False,
        alt_potential_norm=True,
        cut_payload_beta_gradient=False)([
            pred_beta, pred_ccoords, pred_energy, pred_pos, pred_time, pred_id,
            orig_t_idx, orig_t_energy, orig_t_pos, orig_t_time, orig_t_pid,
            row_splits
        ])

    return Model(inputs=Inputs,
                 outputs=[
                     pred_beta, pred_ccoords, pred_energy, pred_pos, pred_time,
                     pred_id, rs
                 ] + backgatheredids + backgathered_coords)
コード例 #4
0
ファイル: nf_pca.py プロジェクト: chernyavskaya/HGCalML
def gravnet_model(Inputs, feature_dropout=-1., addBackGatherInfo=True):

    feat, t_idx, t_energy, t_pos, t_time, t_pid, row_splits = td.interpretAllModelInputs(
        Inputs)
    orig_t_idx, orig_t_energy, orig_t_pos, orig_t_time, orig_t_pid, orig_row_splits = t_idx, t_energy, t_pos, t_time, t_pid, row_splits
    gidx_orig = CreateGlobalIndices()(feat)

    _, row_splits = RaggedConstructTensor()([feat, row_splits])
    rs = row_splits

    feat_norm = ProcessFeatures()(feat)
    feat_norm = BatchNormalization(momentum=0.6)(feat_norm)
    allfeat = []
    x = feat_norm

    backgatheredids = []
    gatherids = []
    backgathered = []
    backgathered_coords = []
    energysums = []

    #really simple real coordinates
    energy = SelectFeatures(0, 1)(feat)
    orig_coords = SelectFeatures(4, 7)(feat_norm)
    coords = Dense(3,
                   use_bias=False,
                   kernel_initializer=tf.keras.initializers.Identity())(
                       orig_coords)  #just rotation and scaling

    #see whats there
    nidx, dist = KNN(K=64, radius=1.0)([coords, rs])

    x = RaggedGlobalExchange()([x, row_splits])
    x_c = Dense(32, activation='elu')(x)
    x_c = Dense(8)(x_c)  #just a few features are enough here
    #this can be full blown because of the small number of input features
    x_c = NeighbourApproxPCA(hidden_nodes=[32, 32, 9])(
        [coords, dist, x_c, nidx])
    x_mp = DistanceWeightedMessagePassing([32, 16, 8])([x, nidx, dist])
    x = Concatenate()([x, x_c, x_mp])
    #this is going to be among the most expensive operations:
    x = Dense(64, activation='elu', name='pre_dense_a')(x)
    x = BatchNormalization(momentum=0.6)(x)
    x = Dense(32, activation='elu', name='pre_dense_b')(x)
    x = BatchNormalization(momentum=0.6)(x)

    allfeat.append(x)
    backgathered_coords.append(coords)

    sel_gidx = gidx_orig

    cdist = dist
    ccoords = coords

    total_iterations = 5

    collectedccoords = []

    for i in range(total_iterations):

        cluster_neighbours = 5
        n_dimensions = 3  #make it plottable
        #derive new coordinates for clustering
        if i:
            ccoords = Add()([
                ccoords,
                (Dense(n_dimensions,
                       use_bias=False,
                       name='newcoords' + str(i),
                       kernel_initializer='zeros')(x))
            ])
            nidx, cdist = KNN(K=6 * cluster_neighbours,
                              radius=-1.0)([ccoords, rs])
            #here we use more neighbours to improve learning of the cluster space

        #cluster first
        #hier = Dense(1,activation='sigmoid')(x)
        #distcorr = Dense(dist.shape[-1],activation='relu',kernel_initializer='zeros')(Concatenate()([x,dist]))
        #dist = Add()([distcorr,dist])
        cdist = LocalDistanceScaling(max_scale=5.)([
            cdist,
            Dense(1, kernel_initializer='zeros')(Concatenate()([x, cdist]))
        ])
        #what if we let the individual distances scale here? so move hits in and out?

        x_cl, rs, bidxs, sel_gidx, energy, x, t_idx, coords, ccoords, cdist = LocalClusterReshapeFromNeighbours2(
            K=cluster_neighbours,
            radius=0.1,
            print_reduction=True,
            loss_enabled=True,
            loss_scale=1.,
            loss_repulsion=0.4,  #.5
            hier_transforms=[64, 32, 32],
            print_loss=True,
            name='clustering_' + str(i))([
                x, cdist, nidx, rs, sel_gidx, energy, x, t_idx, coords,
                ccoords, cdist, t_idx
            ])

        gatherids.append(bidxs)

        #explicit
        energy = ReduceSumEntirely()(
            energy)  #sums up all contained energy per cluster
        n_energy = BatchNormalization(momentum=0.6)(energy)

        x = Concatenate()([x_cl, n_energy])
        x = Dense(128, activation='elu', name='dense_clc_a' + str(i))(x)
        x = BatchNormalization(momentum=0.6)(x)
        #x = Dense(128, activation='elu',name='dense_clc_b'+str(i))(x)
        x = Dense(64, activation='elu')(x)
        x = BatchNormalization(momentum=0.6)(x)

        nneigh = 64
        nfilt = 64
        nprop = 64

        x = Concatenate()([coords, x])

        x_gn, coords, nidx, dist = RaggedGravNet(n_neighbours=nneigh,
                                                 n_dimensions=n_dimensions,
                                                 n_filters=nfilt,
                                                 n_propagate=nprop)([x, rs])

        x_sp = Dense(16)(x)
        x_sp = NeighbourApproxPCA(hidden_nodes=[32, 32, n_dimensions**2])(
            [coords, dist, x_sp, nidx])
        x_sp = BatchNormalization(momentum=0.6)(x_sp)

        x_mp = DistanceWeightedMessagePassing([32, 32, 16, 16, 8,
                                               8])([x, nidx, dist])
        x_mp = BatchNormalization(momentum=0.6)(x_mp)
        #x_sp=x_mp

        x = Concatenate()([x, x_mp, x_sp, x_gn])
        #check and compress it all
        x = Dense(128, activation='elu', name='dense_a_' + str(i))(x)
        x = BatchNormalization(momentum=0.6)(x)
        #x = Dense(128, activation='elu',name='dense_b_'+str(i))(x)
        x = Dense(64, activation='elu', name='dense_c_' + str(i))(x)
        x = Concatenate()([StopGradient()(ccoords), StopGradient()(cdist), x])
        x = BatchNormalization(momentum=0.6)(x)

        #record more and more the deeper we go
        x_r = x
        energysums.append(MultiBackGather()(
            [energy, gatherids]))  #assign energy sum to all cluster components

        allfeat.append(MultiBackGather()([x_r, gatherids]))

        backgatheredids.append(MultiBackGather()([sel_gidx, gatherids]))
        backgathered_coords.append(MultiBackGather()([ccoords, gatherids]))

    x = Concatenate(name='allconcat')(allfeat)
    x = RaggedGlobalExchange()([x, row_splits])
    #x - Dropout(0.3)(x)#force to use different information sources
    x = Dense(128, activation='elu', name='alldense')(x)
    x = BatchNormalization(momentum=0.6)(x)
    x = Dense(64, activation='elu')(x)
    #x = Concatenate()([x]+energysums)

    pred_beta, pred_ccoords, pred_energy, pred_pos, pred_time, pred_id = create_outputs(
        x, feat)

    #loss
    pred_beta = LLFullObjectCondensation(
        print_loss=True,
        energy_loss_weight=1e-4,
        position_loss_weight=1e-2,
        timing_loss_weight=1e-3,
        beta_loss_scale=1.,
        repulsion_scaling=1.,
        q_min=1.5,
        use_average_cc_pos=0.1,
        prob_repulsion=True,
        phase_transition=1,
        alt_potential_norm=True,
        kalpha_damping_strength=0.5,  #1.,
        name="FullOCLoss")([
            pred_beta, pred_ccoords, pred_energy, pred_pos, pred_time, pred_id,
            orig_t_idx, orig_t_energy, orig_t_pos, orig_t_time, orig_t_pid,
            row_splits
        ])

    return Model(inputs=Inputs,
                 outputs=[
                     pred_beta, pred_ccoords, pred_energy, pred_pos, pred_time,
                     pred_id, rs
                 ] + backgatheredids + backgathered_coords)