clf.add(RNN(10, activation="tanh", bptt_trunc=5, input_shape=(10, 61))) clf.add(Activation('softmax')) clf.summary("Recurrent Neural Network") # Print a problem instance and the correct solution tmp_X = np.argmax(X_train[0], axis=1) tmp_y = np.argmax(y_train[0], axis=1) print ("Number Series Problem:") print ("X = [" + " ".join(tmp_X.astype("str")) + "]") print ("y = [" + " ".join(tmp_y.astype("str")) + "]") print () train_err, _ = clf.fit(X_train, y_train, n_epochs=500, batch_size=512) # Predict labels of the test data y_pred = np.argmax(clf.predict(X_test), axis=2) y_test = np.argmax(y_test, axis=2) print () print ("Results:") for i in range(5): # Print a problem instance and the correct solution tmp_X = np.argmax(X_test[i], axis=1) tmp_y1 = y_test[i] tmp_y2 = y_pred[i] print ("X = [" + " ".join(tmp_X.astype("str")) + "]") print ("y_true = [" + " ".join(tmp_y1.astype("str")) + "]") print ("y_pred = [" + " ".join(tmp_y2.astype("str")) + "]") print () accuracy = np.mean(accuracy_score(y_test, y_pred))
class Autoencoder(): """An Autoencoder with deep fully-connected neural nets. Training Data: MNIST Handwritten Digits (28x28 images) """ def __init__(self): self.img_rows = 28 self.img_cols = 28 self.img_dim = self.img_rows * self.img_cols self.latent_dim = 128 # The dimension of the data embedding optimizer = Adam(learning_rate=0.0002, b1=0.5) loss_function = SquareLoss self.encoder = self.build_encoder(optimizer, loss_function) self.decoder = self.build_decoder(optimizer, loss_function) self.autoencoder = NeuralNetwork(optimizer=optimizer, loss=loss_function) self.autoencoder.layers.extend(self.encoder.layers) self.autoencoder.layers.extend(self.decoder.layers) print () self.autoencoder.summary(name="Variational Autoencoder") def build_encoder(self, optimizer, loss_function): encoder = NeuralNetwork(optimizer=optimizer, loss=loss_function) encoder.add(Dense(512, input_shape=(self.img_dim,))) encoder.add(Activation('leaky_relu')) encoder.add(BatchNormalization(momentum=0.8)) encoder.add(Dense(256)) encoder.add(Activation('leaky_relu')) encoder.add(BatchNormalization(momentum=0.8)) encoder.add(Dense(self.latent_dim)) return encoder def build_decoder(self, optimizer, loss_function): decoder = NeuralNetwork(optimizer=optimizer, loss=loss_function) decoder.add(Dense(256, input_shape=(self.latent_dim,))) decoder.add(Activation('leaky_relu')) decoder.add(BatchNormalization(momentum=0.8)) decoder.add(Dense(512)) decoder.add(Activation('leaky_relu')) decoder.add(BatchNormalization(momentum=0.8)) decoder.add(Dense(self.img_dim)) decoder.add(Activation('tanh')) return decoder def train(self, n_epochs, batch_size=128, save_interval=50): # mnist = fetch_mldata('MNIST original') mnist = fetch_openml('mnist_784', version=1, cache=True) X = mnist.data y = mnist.target # Rescale [-1, 1] X = (X.astype(np.float32) - 127.5) / 127.5 for epoch in range(n_epochs): # Select a random half batch of images idx = np.random.randint(0, X.shape[0], batch_size) imgs = X[idx] # Train the Autoencoder loss, _ = self.autoencoder.train_on_batch(imgs, imgs) # Display the progress print ("%d [D loss: %f]" % (epoch, loss)) # If at save interval => save generated image samples if epoch % save_interval == 0: self.save_imgs(epoch, X) def save_imgs(self, epoch, X): r, c = 5, 5 # Grid size # Select a random half batch of images idx = np.random.randint(0, X.shape[0], r*c) imgs = X[idx] # Generate images and reshape to image shape gen_imgs = self.autoencoder.predict(imgs).reshape((-1, self.img_rows, self.img_cols)) # Rescale images 0 - 1 gen_imgs = 0.5 * gen_imgs + 0.5 fig, axs = plt.subplots(r, c) plt.suptitle("Autoencoder") cnt = 0 for i in range(r): for j in range(c): axs[i,j].imshow(gen_imgs[cnt,:,:], cmap='gray') axs[i,j].axis('off') cnt += 1 fig.savefig("ae_%d.png" % epoch) plt.close()