コード例 #1
0
def create_mf_rbf(_independent_variables_low, _independent_variables_high,
                  _dependent_variables_low, _dependent_variables_high):
    mf_rbf_stress_list = []
    for _i_point in range(len(_dependent_variables_low)):
        mf_rbf_stress = MF_RBF()
        mf_rbf_stress.fit(_independent_variables_low,
                          _dependent_variables_low[_i_point].reshape(-1, 1),
                          _independent_variables_high,
                          _dependent_variables_high[_i_point].reshape(-1, 1))
        mf_rbf_stress_list.append(mf_rbf_stress)
    return mf_rbf_stress_list
コード例 #2
0
def create_mf_rbf(_independent_variables_low, _independent_variables_high,
                  _dependent_variables_low, _dependent_variables_high):
    mf_rbf_stress_list = []

    low_model_stress_w_list = []
    stds = None
    rbf_type = 'mq'
    x_high = None
    bf_sigma = None
    omega_list = []

    for _i_point in range(len(_dependent_variables_low)):
        mf_rbf_stress = MF_RBF()
        mf_rbf_stress.fit(
            _independent_variables_low,
            _dependent_variables_low[_i_point].reshape(-1, 1),
            _independent_variables_high,
            _dependent_variables_high[_i_point].reshape(-1, 1),
            bf_type="G",
        )
        mf_rbf_stress_list.append(mf_rbf_stress)

        low_model_stress_w_list.append(mf_rbf_stress.low_model.w.tolist())
        if _i_point == 0:
            stds = mf_rbf_stress.low_model.std
            x_high = mf_rbf_stress.x_high.tolist()
            bf_sigma = mf_rbf_stress.bf_sigma.tolist()
        omega_list.append(mf_rbf_stress.omega.tolist())

    dict_mf_rbf_model = {
        "low_model_w": low_model_stress_w_list,
        "stds": stds,
        "x_train": train_low.flatten().tolist(),
        "rbf_type": rbf_type,
        "x_high": x_high,
        "bf_sigma": bf_sigma,
        "omega": omega_list,
    }
    # json_rbf_model = json.dumps(dict_mf_rbf_model)
    # with open("C:/Users/asus/Desktop/multi_fidelity_truss_stress_mf_rbf.json", "w") as f:
    #     json.dump(json_rbf_model, f)

    return mf_rbf_stress_list
def create_mf_rbf(_independent_variables_low, _independent_variables_high,
                  _dependent_variables_low, _dependent_variables_high,
                  deformation_or_stress):
    mf_rbf_list = []

    low_model_w_list = []
    stds = None
    rbf_type = 'mq'
    x_high = None
    bf_sigma = None
    omega_list = []

    for _i_point in range(len(_dependent_variables_low)):
        mf_rbf = MF_RBF()
        mf_rbf.fit(_independent_variables_low,
                   _dependent_variables_low[_i_point].reshape(-1, 1),
                   _independent_variables_high,
                   _dependent_variables_high[_i_point].reshape(-1, 1))
        mf_rbf_list.append(mf_rbf)

        low_model_w_list.append(mf_rbf.low_model.w.tolist())
        if _i_point == 0:
            stds = mf_rbf.low_model.std
            x_high = mf_rbf.x_high.tolist()
            bf_sigma = mf_rbf.bf_sigma.tolist()
        omega_list.append(mf_rbf.omega.tolist())

    dict_mf_rbf_model = {
        "low_model_w_" + deformation_or_stress: low_model_w_list,
        "stds": stds,
        "x_train": train_low.flatten().tolist(),
        "rbf_type_" + deformation_or_stress: rbf_type,
        "x_high": x_high,
        "bf_sigma": bf_sigma,
        "omega_" + deformation_or_stress: omega_list,
    }
    return dict_mf_rbf_model