コード例 #1
0
class HRMonitor:
    """
  Encapsulated class attributes (with default values)
  """
    __hr = 0  # the current heart rate
    __time = None  # CircularList containing the time vector
    __ppg = None  # CircularList containing the raw signal
    __filtered = None  # CircularList containing filtered signal
    __num_samples = 0  # The length of data maintained
    __new_samples = 0  # How many new samples exist to process
    __fs = 0  # Sampling rate in Hz
    __thresh = 0.6  # Threshold from Tutorial 2
    """
  Initialize the class instance
  """
    def __init__(self, num_samples, fs, times=[], data=[]):
        self.__hr = 0
        self.__num_samples = num_samples
        self.__fs = fs
        self.__time = CircularList(times, num_samples)
        self.__ppg = CircularList(data, num_samples)
        self.__filtered = CircularList([], num_samples)

    """
  Add new samples to the data buffer
  Handles both integers and vectors!
  """

    def add(self, t, x):
        if isinstance(t, np.ndarray):
            t = t.tolist()
        if isinstance(x, np.ndarray):
            x = x.tolist()

        self.__time.add(t)
        self.__ppg.add(x)
        self.__new_samples += len(x)

    """
  Compute the average heart rate over the peaks
  """

    def compute_heart_rate(self, peaks):
        t = np.array(self.__time)
        return 60 / np.mean(np.diff(t[peaks]))

    """
  Process the new data to update step count
  """

    def process(self):
        # Grab only the new samples into a NumPy array
        x = np.array(self.__ppg[-self.__new_samples:])

        # Filter the signal (feel free to customize!)
        x = filt.detrend(x, 25)
        x = filt.moving_average(x, 5)
        x = filt.gradient(x)
        x = filt.normalize(x)

        # Store the filtered data
        self.__filtered.add(x.tolist())

        # Find the peaks in the filtered data
        _, peaks = filt.count_peaks(x, self.__thresh, 1)

        # Update the step count and reset the new sample count
        self.__hr = self.compute_heart_rate(peaks)
        self.__new_samples = 0

        # Return the heart rate, peak locations, and filtered data
        return self.__hr, peaks, np.array(self.__filtered)

    """
  Clear the data buffers and step count
  """

    def reset(self):
        self.__steps = 0
        self.__time.clear()
        self.__ppg.clear()
        self.__filtered = np.zeros(self.__num_samples)
コード例 #2
0
class Pedometer:
    """
  Encapsulated class attributes (with default values)
  """
    __steps = 0  # the current step count
    __l1 = None  # CircularList containing L1-norm
    __filtered = None  # CircularList containing filtered signal
    __num_samples = 0  # The length of data maintained
    __new_samples = 0  # How many new samples exist to process
    __fs = 0  # Sampling rate in Hz
    __b = None  # Low-pass coefficients
    __a = None  # Low-pass coefficients
    __thresh_low = 3  # Threshold from Tutorial 2
    __thresh_high = 15  # Threshold from Tutorial 2
    __xi = None  # Initial conditions for filter
    __yi = None  # Initial conditions for filter
    """
  Initialize the class instance
  """
    def __init__(self, num_samples, fs, data=None):
        self.__steps = 0
        self.__num_samples = num_samples
        self.__fs = fs
        self.__l1 = CircularList(data, num_samples)
        self.__filtered = CircularList([], num_samples)
        self.__b, self.__a = filt.create_filter(3, 1.2, "lowpass", fs)
        self.__xi = np.zeros(4)
        self.__yi = np.zeros(4)

    """
  Add new samples to the data buffer
  Handles both integers and vectors!
  """

    def add(self, ax, ay, az):
        l1 = filt.l1_norm(ax, ay, az)
        if isinstance(ax, int):
            num_add = 1
        else:
            num_add = len(ax)
            l1 = l1.tolist()

        self.__l1.add(l1)
        self.__new_samples += num_add

    """
  Process the new data to update step count
  """

    def process(self):
        # Grab only the new samples into a NumPy array
        x = np.array(self.__l1[-self.__new_samples:])

        # Filter the signal (detrend, LP, MA, etc…)
        x = filt.detrend(x)
        # x = filt.filter(self.__b, self.__a, x)
        x, self.__xi, self.__yi = filt.filter_ic(self.__b, self.__a, x,
                                                 self.__xi, self.__yi)
        x = filt.gradient(x)
        x = filt.moving_average(x, 25)

        # Store the filtered data
        self.__filtered.add(x.tolist())

        # Count the number of peaks in the filtered data
        count, peaks = filt.count_peaks(x, self.__thresh_low,
                                        self.__thresh_high)

        # Update the step count and reset the new sample count
        self.__steps += count
        self.__new_samples = 0

        # Return the step count, peak locations, and filtered data
        return self.__steps, peaks, np.array(self.__filtered)

    """
  Clear the data buffers and step count
  """

    def reset(self):
        self.__steps = 0
        self.__l1.clear()
        self.__filtered = np.zeros(self.__num_samples)
コード例 #3
0
class HRMonitor:
    """
  Encapsulated class attributes (with default values)
  """
    __hr = 0  # the current heart rate
    __time = None  # CircularList containing the time vector
    __ppg = None  # CircularList containing the raw signal
    __filtered = None  # CircularList containing filtered signal
    __num_samples = 0  # The length of data maintained
    __new_samples = 0  # How many new samples exist to process
    __fs = 0  # Sampling rate in Hz
    __thresh = 0.6  # Threshold from Tutorial 2
    __directory = "/Users/akshaygopalkrishnan/Desktop/ECE 16/Python/Lab 7/data/data"
    """
  Initialize the class instance
  """
    def __init__(self, num_samples, fs, times=[], data=[]):
        self.__hr = 0
        self.__num_samples = num_samples
        self.__fs = fs
        self.__time = CircularList(data, num_samples)
        self.__ppg = CircularList(data, num_samples)
        self.__filtered = CircularList([], num_samples)
        self.__gmm = GMM(n_components=2)

    """
  Add new samples to the data buffer
  Handles both integers and vectors!
  """

    def add(self, t, x):
        if isinstance(t, np.ndarray):
            t = t.tolist()
        if isinstance(x, np.ndarray):
            x = x.tolist()

        if isinstance(x, int):
            self.__new_samples += 1
        else:
            self.__new_samples += len(x)

        self.__time.add(t)
        self.__ppg.add(x)

    """
  Compute the average heart rate over the peaks
  """

    def compute_heart_rate(self, peaks):
        t = np.array(self.__time)
        if len(np.diff(t[peaks])) > 0:
            return 60 / np.mean(np.diff(t[peaks]))
        else:
            return 0

    """ 
  Removes outlier peaks from the filtered data
  @:param peaks: The location of each peak 
  @:return the peaks with outliers removed
  """

    def remove_outliers(self, peaks):
        if len(peaks) > 1:
            t = np.array(self.__time)

            # Calculate peak difference and average/standard deviation
            peak_diff = np.diff(t[peaks])
            avg_peak_diff = np.mean(peak_diff)
            std_peak_diff = np.std(peak_diff)

            for i in range(len(peak_diff)):
                # If the peak difference is less than 2 deviations from the average, remove the peak (outlier)
                if peak_diff[i] < (avg_peak_diff - (1 * std_peak_diff)):
                    peaks.pop(i + 1)

        return peaks

    # Filter the signal (as in the prior lab)
    def train_process(self, x):
        x = filt.detrend(x, 25)
        x = filt.moving_average(x, 5)
        x = filt.gradient(x)
        return filt.normalize(x)

    # Retrieve a list of the names of the subjects
    def get_subjects(self, directory):
        filepaths = glob.glob(directory + "/*")
        return [filepath.split("/")[-1] for filepath in filepaths]

    # Estimate the heart rate from the user-reported peak count
    def get_hr(self, filepath, num_samples, fs):
        count = int(filepath.split("_")[-1].split(".")[0])
        seconds = num_samples / fs
        return count / seconds * 60  # 60s in a minute

    # Estimate the sampling rate from the time vector
    def estimate_fs(self, times):
        return 1 / np.mean(np.diff(times))

    # Retrieve a data file, verifying its FS is reasonable
    def get_data(self, directory, subject, trial, fs):
        search_key = "%s/%s/%s_%02d_*.csv" % (directory, subject, subject,
                                              trial)
        filepath = glob.glob(search_key)[0]
        t, ppg = np.loadtxt(filepath, delimiter=',', unpack=True)
        t = (t - t[0]) / 1e3
        hr = self.get_hr(filepath, len(ppg), fs)
        fs_est = self.estimate_fs(t)
        if (fs_est < fs - 1 or fs_est > fs):
            print("Bad data! FS=%.2f. Consider discarding: %s" %
                  (fs_est, filepath))
        return t, ppg, hr, fs_est

    """
  Trains the GMM model on offline data 
  @:return: the trained GMM model 
  """

    def train(self):
        print("Training GMM model... ")
        subjects = self.get_subjects(self.__directory)
        train_data = np.array([])
        for subject in subjects:
            for trial in range(1, 11):
                t, ppg, hr, fs_est = self.get_data(self.__directory, subject,
                                                   trial, self.__fs)
                train_data = np.append(train_data, self.train_process(ppg))

        # Train the GMM
        train_data = train_data.reshape(-1,
                                        1)  # convert from (N,1) to (N,) vector
        self.__gmm = GMM(n_components=2).fit(train_data)

    """
  Estimate the heart rate given GMM output labels
  """

    def estimate_hr(self, labels, num_samples, fs):
        peaks = np.diff(labels, prepend=0) == 1
        count = sum(peaks)
        seconds = num_samples / fs
        hr = count / seconds * 60  # 60s in a minute
        return hr, peaks

    """
  Uses the GMM model to estimate the heart rate 
  @:param filtered: the filtered data
  @:param fs: the sampling frequency
  @:return: the estimated heart rate and estimated time of each peak 
  """

    def predict(self):
        # Grab only the new samples into a NumPy array
        x = np.array(self.__ppg[-self.__new_samples:])
        filtered_arr = self.train_process(x)
        self.__filtered.add(filtered_arr.tolist())
        labels = self.__gmm.predict(np.array(self.__filtered).reshape(-1, 1))
        self.__new_samples = 0
        hr_est, est_peaks = self.estimate_hr(labels, len(self.__filtered),
                                             self.__fs)
        return hr_est, est_peaks, np.array(self.__filtered)

    """
  Process the new data to update step count
  """

    def process(self):
        # Grab only the new samples into a NumPy array
        x = np.array(self.__ppg[-self.__new_samples:])

        # Filter the signal (feel free to customize!)
        x = filt.detrend(x, 25)
        x = filt.moving_average(x, 5)
        x = filt.gradient(x)
        x = filt.normalize(x)

        # Store the filtered data
        self.__filtered.add(x.tolist())

        # Find the peaks in the filtered data
        _, peaks = filt.count_peaks(self.__filtered, self.__thresh, 1)

        peaks = self.remove_outliers(peaks)

        # Update the step count and reset the new sample count
        self.__hr = self.compute_heart_rate(peaks)
        self.__new_samples = 0

        # Return the heart rate, peak locations, and filtered data
        return self.__hr, peaks, np.array(self.__filtered)

    """
  Clear the data buffers and step count
  """

    def reset(self):
        self.__steps = 0
        self.__time.clear()
        self.__ppg.clear()
        self.__filtered = np.zeros(self.__num_samples)