コード例 #1
0
    def __init__(self, train_file, validation_file, test_file, ECG_N):

        self.ECG_N = ECG_N
        self.ecg_features = ECGFeatures(fs=FS_ECG)
        self.data_train = self.readData(pd.read_csv(train_file))
        self.data_val = self.readData(pd.read_csv(validation_file))
        self.data_test = self.readData(pd.read_csv(test_file))


        self.ECG_N = ECG_N

        self.train_n = len(self.data_train)
        self.val_n = len(self.data_val)
        self.test_n = len(self.data_test)
コード例 #2
0
    def __init__(self, gps_file, ecg_file, mask_file, ecg_n=45, split_time = 45, stride=0.2):

        self.gps_file = gps_file
        self.ecg_file = ecg_file
        self.mask_file = mask_file
        self.ecg_n = ecg_n
        self.stride = stride

        self.featuresExct = ECGFeatures(FS_ECG)

        # normalization ecg features
        self.ecg_mean = np.array([8.69006926e+02, 5.36894839e+01, 5.13280806e+01, 3.60941889e+01,
       5.12644394e+01, 3.50184864e+01, 7.05304536e+01, 4.00354951e+00,
       1.93190808e+01, 2.37990616e+01, 4.74128624e+01, 1.79100193e+01,
       3.61127269e+01, 8.89897875e+00, 1.83440847e+01, 9.47694202e-03,
       2.99294977e-02, 8.32468992e-02, 2.66982160e-01, 1.05872866e+02,
       8.24120855e+02, 1.61071678e+03, 2.27217251e+03, 3.79534713e+00,
       2.62838417e+01, 3.42443566e+01, 3.56764545e+01, 3.36520073e+00,
       5.63147720e+00, 6.03246072e+00, 6.01429266e+00, 5.03771520e+01,
       4.96228480e+01, 1.88115762e+00, 1.67060736e+00, 1.47731287e-01,
       3.62288239e+01, 6.01129089e+01, 2.21647750e+00, 1.17607048e+04,
       4.32725792e-01])

        self.ecg_std = np.array([1.12849622e+02, 7.22749812e+00, 4.13239686e+01, 3.76508218e+01,
       6.06763869e+01, 4.94652050e+01, 9.08751400e+00, 2.91083561e+00,
       1.74801557e+01, 1.09281612e+01, 2.35429989e+01, 1.10034329e+01,
       2.36269451e+01, 9.38428850e+00, 2.01946583e+01, 1.47242980e-03,
       1.22646518e-02, 2.66829649e-02, 7.71102801e-02, 8.09024660e+02,
       3.84167641e+03, 1.11956783e+04, 1.61020832e+04, 3.85171123e+00,
       1.77196093e+01, 1.81367242e+01, 2.12639285e+01, 1.62165833e+00,
       1.37502961e+00, 1.34862368e+00, 1.51030700e+00, 2.27359887e+01,
       2.27359887e+01, 2.64173948e+00, 5.57174922e-01, 8.24678134e-02,
       4.28983320e+01, 4.14642962e+01, 9.86755656e-01, 4.09682862e+04,
       3.83966021e-01])

        self.data_set = self.readData()
        self.test_n = len(self.data_set)
コード例 #3
0
    def __init__(self, train_file=None, validation_file=None, test_file=None, ECG_N=None, KD=False, teacher=False, ECG=False, training=True, high_only=False):
        utils_path = "D:\\usr\\pras\\project\\ValenceArousal\\KnowledgeDistillation\\Utils\\"
        self.max = np.load(utils_path+"max.npy")
        self.mean = np.load(utils_path+"mean.npy")
        self.std = np.load(utils_path+"std.npy")

        self.KD = KD
        self.teacher = teacher
        self.ECG_N = ECG_N
        self.ECG = ECG
        self.high_only = high_only
        self.w = 0
        self.j =0
        self.ecg_features = ECGFeatures(fs=FS_ECG)

        #normalization ecg features
        self.ecg_mean = np.array([2.18785670e+02, 5.34106162e+01, 1.22772848e+01, 8.87240641e+00,
       1.23045575e+01, 8.19622448e+00, 2.80084568e+02, 1.51193876e+01,
       3.36927105e+01, 6.63072895e+01, 7.52327656e-01, 1.85165308e+00,
       1.42787092e-01])

        self.ecg_std = np.array([28.6904681 ,  7.2190369 ,  8.96941273,  8.57895833, 13.34906982,
       10.67710367, 36.68525696,  9.31097392, 21.09139643, 21.09139643,
        0.88959446,  0.48770451,  0.08282199])
        self.ECG_N = ECG_N

        if training == True:
            self.data_train = self.readData(pd.read_csv(train_file), KD, True)
            self.data_val = self.readData(pd.read_csv(validation_file), KD)
            self.train_n = len(self.data_train)
            self.val_n = len(self.data_val)

        self.data_test = self.readData(pd.read_csv(test_file), KD)
        self.data_val = self.readData(pd.read_csv(validation_file), KD)
        self.test_n = len(self.data_test)
        self.val_n = len(self.data_val)
コード例 #4
0
ファイル: NoiseFilter.py プロジェクト: gitarja/ValenceArousal
import glob
from Conf.Settings import FS_ECG, FS_GSR, FS_RESP, DATASET_PATH
from ECG.ECGFeatures import ECGFeatures
from GSR.GSRFeatures import PPGFeatures, EDAFeatures
from Resp.RespFeatures import RespFeatures
import pandas as pd

data_path = "D:\\usr\\pras\\data\\YAMAHA\\Yamaha-Experiment (2020-10-26 - 2020-11-06)\\data\\*"
ecg_file = "\\ECG\\"
gsr_file = "\\GSR\\"
resp_file = "\\Resp\\"

ecg_features = ECGFeatures(fs=FS_ECG)
ppg_features = PPGFeatures(fs=FS_GSR)
eda_features = EDAFeatures(fs=FS_GSR)
resp_features = RespFeatures(fs=FS_RESP)

for folder in glob.glob(DATASET_PATH + "*"):
    for subject in glob.glob(folder + "\\*-2020-*"):
        print(subject)
        try:
            # filter ecg iPhone
            # ecg = pd.read_csv(glob.glob(subject+ecg_file+"*.csv")[0])
            # ecg_filtered = ecg_features.filterECG(ecg["ecg"].values)
            # ecg["ecg"] = ecg_filtered
            # ecg.to_csv(subject+ecg_file+"filtered_ecg.csv", index=False)
            #
            # # filter PPG and EDA
            # gsr = pd.read_csv(glob.glob(subject + gsr_file + "*.csv")[0],  header=[0,1])
            # time = gsr.iloc[:, 0].values
            # eda = gsr.iloc[:, 5].values
コード例 #5
0
path_results = path + 'results\\ECG\\'

data = pd.read_csv(path_ECGdata)
data_EmotionTest = pd.read_csv(path_EmotionTest)
# start = "2020-04-29 15:40:21"
# end = "2020-04-29 15:54:56"
#
# data = data.loc[(data.timestamp >= start) & (data.timestamp <= end)]

# convert timestamp to int
data.loc[:, 'timestamp'] = data.loc[:, 'timestamp'].apply(timeToInt)
data_EmotionTest.loc[:, 'Time_Start'] = data_EmotionTest.loc[:, 'Time_Start'].apply(timeToInt)
data_EmotionTest.loc[:, 'Time_End'] = data_EmotionTest.loc[:, 'Time_End'].apply(timeToInt)

# features extractor
featuresExct = ECGFeatures(set.FS_ECG)
emotionTestResult = pd.DataFrame(columns=["Idx", "Start", "End", "Valence", "Arousal", "Emotion", "Status"])
split_time = 45
idx = 0
for i in range(len(data_EmotionTest)):
    tdelta = data_EmotionTest.iloc[i]["Time_End"] - data_EmotionTest.iloc[i]["Time_Start"]
    time_end = data_EmotionTest.iloc[i]["Time_End"]
    valence = data_EmotionTest.iloc[i]["Valence"]
    arousal = data_EmotionTest.iloc[i]["Arousal"]
    emotion = data_EmotionTest.iloc[i]["Emotion"]

    for j in np.arange(0, (tdelta // split_time), 0.4):
        end = time_end - (j * split_time)
        start = time_end - ((j + 1) * split_time)
        ecg = data[(data["timestamp"].values >= start) & (data["timestamp"].values <= end)]
        status = 0
コード例 #6
0
import pandas as pd
from Libs.Utils import utcToTimeStamp, timeToInt, butterBandpassFilter, windowFilter
from matplotlib import pyplot as plt
from ECG.ECGFeatures import ECGFeatures

path = "D:\\usr\\pras\\data\\EmotionTestVR\\Watanabe\\"
save_path = "D:\\usr\\pras\\result\\ValenceArousal\\ECG\\"
game_results_file = path + "Watanabe_M_2020_7_27_11_25_52_gameResults.csv"
ecg_file = path + "20200727_112502_148_HB_PW.csv"

ecg_data = pd.read_csv(ecg_file)
ecg_data["timestamp"] = ecg_data["timestamp"].apply(timeToInt)

game_results = pd.read_csv(game_results_file)
featuresExct = ECGFeatures()
for i in (0, 1, 7, 9):
    time_start = timeToInt(game_results.iloc[i]["Time_Start"])
    time_end = timeToInt(game_results.iloc[i]["Time_End"])

    ecg = ecg_data[(ecg_data["timestamp"].values >= time_start)
                   & (ecg_data["timestamp"].values <= time_end)]["ecg"].values

    ts, hb = featuresExct.computeHeartBeat(ecg, 256.)

    plt.plot(ts, hb)
    plt.ylim([50, 120])
    plt.ylabel("Heart beat (bmp)")
    plt.savefig(save_path + str(i) + "_ecg.png")
    plt.show()
コード例 #7
0
        y_val.append(features_list.iloc[i]["Valence"])
    else:
        print(subject_path + "_" + str(i))

#load road test features
subject_road_path = ROAD_TEST_PATH + "TS001 E6\\20201119_135342_615_HB_PW.csv"
ecg_road_data = pd.read_csv(subject_road_path)
# convert timestamp to int
ecg_road_data.loc[:, 'timestamp'] = ecg_road_data.loc[:, 'timestamp'].apply(
    timeToInt)
time_start = np.min(ecg_road_data["timestamp"].values)
time_end = np.max(ecg_road_data["timestamp"].values)
tdelta = time_end - time_start

#features extractor
featuresExct = ECGFeatures(200)

#road test features
road_test_features = []
for j in np.arange(0, (tdelta // SPLIT_TIME), 0.2):
    end = time_end - ((j) * SPLIT_TIME)
    start = time_end - ((j + 1) * SPLIT_TIME) - EXTENTION_TIME

    ecg = ecg_road_data[(ecg_road_data["timestamp"].values >= start)
                        & (ecg_road_data["timestamp"].values <= end)]
    ecg_values = featuresExct.filterECG(ecg['ecg'].values)
    ecg_values = signal.resample(ecg_values,
                                 int((len(ecg_values) / FS_ECG) * 200))

    time_domain = featuresExct.extractTimeDomain(ecg_values)
    freq_domain = featuresExct.extractFrequencyDomain(ecg_values)
コード例 #8
0
from Resp.RespFeatures import RespFeatures
from ECG.ECGFeatures import ECGFeatures
import pandas as pd
import glob
from Libs.Utils import timeToInt, arToLabels
from Conf.Settings import FS_RESP, SPLIT_TIME, STRIDE, EXTENTION_TIME, RESP_RAW_PATH, ECG_RAW_RESP_PATH, RESP_PATH, ECG_RESP_PATH, DATASET_PATH, ECG_RR_PATH
import numpy as np
import os

data_path = "D:\\usr\\pras\\data\\YAMAHA\\Yamaha-Experiment (2020-10-26 - 2020-11-06)\\data\\*"
resp_file = "\\Resp\\"
game_result = "\\*_gameResults.csv"

resp_features_exct = RespFeatures(FS_RESP)
ecg_features_exct = ECGFeatures(FS_RESP)
min_len = FS_RESP * (SPLIT_TIME + 1)

for folder in glob.glob(DATASET_PATH + "*"):
    for subject in glob.glob(folder + "\\*-2020-*"):
        print(subject)
        try:
            data_EmotionTest = pd.read_csv(glob.glob(subject + game_result)[0])
            resp_data = pd.read_csv(subject + resp_file + "filtered_resp.csv")
            ecg_resp_data = pd.read_csv(subject + resp_file +
                                        "filtered_ecg_resp.csv")
            resp_data.iloc[:, 0] = resp_data.iloc[:, 0].apply(timeToInt)
            ecg_resp_data.iloc[:, 0] = ecg_resp_data.iloc[:,
                                                          0].apply(timeToInt)
            data_EmotionTest["Time_Start"] = data_EmotionTest[
                "Time_Start"].apply(timeToInt)
            data_EmotionTest["Time_End"] = data_EmotionTest["Time_End"].apply(
コード例 #9
0
downsample_eeg_len = SPLIT_TIME * 200
#EDA Features extractor
eda_features_exct = EDAFeatures(FS_GSR)
ppg_features_exct = PPGFeatures(FS_GSR)
min_eda_len = (FS_GSR * SPLIT_TIME) - 50

#EEG features extractor
eeg_filter = SpaceLapFilter()
eeg_features_exct = EEGFeatures(FS_EEG)

#resp features extractor
resp_features_exct = RespFeatures(FS_RESP)
ecg_resp_features_exct = ECGRespFeatures(FS_RESP)

#ECG features exract
ecg_features_exct = ECGFeatures(FS_ECG)

for folder in glob.glob(DATASET_PATH + "*"):

    for subject in glob.glob(folder + "\\*-2020-10-27"):
        if not path.exists(subject + ALL_FEATURES_PATH):
            os.mkdir(subject + ALL_FEATURES_PATH)
        try:
            data_EmotionTest = pd.read_csv(glob.glob(subject + game_result)[0])
            #open ECG
            ecg_data = pd.read_csv(glob.glob(subject + ecg_file + "*.csv")[0])
            ecg_data.loc[:, 'timestamp'] = ecg_data.loc[:, 'timestamp'].apply(
                timeToInt)
            #open GSR
            eda_data = pd.read_csv(subject + gsr_file + "filtered_eda.csv")
            ppg_data = pd.read_csv(subject + gsr_file + "filtered_ppg.csv")
コード例 #10
0
class DataFetchRoad:

    def __init__(self, gps_file, ecg_file, mask_file, ecg_n=45, split_time = 45, stride=0.2):

        self.gps_file = gps_file
        self.ecg_file = ecg_file
        self.mask_file = mask_file
        self.ecg_n = ecg_n
        self.stride = stride

        self.featuresExct = ECGFeatures(FS_ECG)

        # normalization ecg features
        self.ecg_mean = np.array([8.69006926e+02, 5.36894839e+01, 5.13280806e+01, 3.60941889e+01,
       5.12644394e+01, 3.50184864e+01, 7.05304536e+01, 4.00354951e+00,
       1.93190808e+01, 2.37990616e+01, 4.74128624e+01, 1.79100193e+01,
       3.61127269e+01, 8.89897875e+00, 1.83440847e+01, 9.47694202e-03,
       2.99294977e-02, 8.32468992e-02, 2.66982160e-01, 1.05872866e+02,
       8.24120855e+02, 1.61071678e+03, 2.27217251e+03, 3.79534713e+00,
       2.62838417e+01, 3.42443566e+01, 3.56764545e+01, 3.36520073e+00,
       5.63147720e+00, 6.03246072e+00, 6.01429266e+00, 5.03771520e+01,
       4.96228480e+01, 1.88115762e+00, 1.67060736e+00, 1.47731287e-01,
       3.62288239e+01, 6.01129089e+01, 2.21647750e+00, 1.17607048e+04,
       4.32725792e-01])

        self.ecg_std = np.array([1.12849622e+02, 7.22749812e+00, 4.13239686e+01, 3.76508218e+01,
       6.06763869e+01, 4.94652050e+01, 9.08751400e+00, 2.91083561e+00,
       1.74801557e+01, 1.09281612e+01, 2.35429989e+01, 1.10034329e+01,
       2.36269451e+01, 9.38428850e+00, 2.01946583e+01, 1.47242980e-03,
       1.22646518e-02, 2.66829649e-02, 7.71102801e-02, 8.09024660e+02,
       3.84167641e+03, 1.11956783e+04, 1.61020832e+04, 3.85171123e+00,
       1.77196093e+01, 1.81367242e+01, 2.12639285e+01, 1.62165833e+00,
       1.37502961e+00, 1.34862368e+00, 1.51030700e+00, 2.27359887e+01,
       2.27359887e+01, 2.64173948e+00, 5.57174922e-01, 8.24678134e-02,
       4.28983320e+01, 4.14642962e+01, 9.86755656e-01, 4.09682862e+04,
       3.83966021e-01])

        self.data_set = self.readData()
        self.test_n = len(self.data_set)


    def fetch(self):
        i = 0
        while i < len(self.data_set):
            data_i = self.data_set[i]
            yield data_i
            i+=1

    def readData(self):
        data_set = []
        gps_data = pd.read_csv(self.gps_file)
        ecg_data = pd.read_csv(self.ecg_file)

        ecg_data.loc[:, 'timestamp'] = ecg_data.loc[:, 'timestamp'].apply(timeToInt)
        gps_data.loc[:, 'timestamp'] = gps_data.loc[:, 'timestamp'].apply(timeToInt)

        for j in range(1, len(gps_data)):
            start = gps_data.loc[j]["timestamp"]
            end = start + (SPLIT_TIME+4)
            ecg = ecg_data[(ecg_data["timestamp"].values >= start) & (ecg_data["timestamp"].values <= end)]["ecg"].values
            # print(len(ecg))
            if len(ecg) >= self.ecg_n:
                ecg = ecg[:self.ecg_n]

                #extract ECG features
                time_domain = self.featuresExct.extractTimeDomain(ecg)
                freq_domain =  self.featuresExct.extractFrequencyDomain(ecg)
                nonlinear_domain =  self.featuresExct.extractNonLinearDomain(ecg)
                concatenate_features = (np.concatenate([time_domain, freq_domain, nonlinear_domain]) - self.ecg_mean) / self.ecg_std
                data_set.append(concatenate_features)

                #raw ecg
                # ecg = (ecg - 2140.397356669409) / 370.95493558685325
                # ecg = (ecg - 2048.485947046843) / 156.5629266658633
                # ecg = ecg / (4095 - 0)
                # ecg = signal.resample(ecg, 200 * SPLIT_TIME)
                # data_set.append(ecg)
            # print(ecg)
        return data_set
コード例 #11
0
from Resp.RespFeatures import RespFeatures
from Libs.Utils import timeToInt
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data_path = "D:\\usr\\pras\\data\\YAMAHA\\Yamaha-Experiment (2020-10-26 - 2020-11-06)\\data\\*"
ecg_file = "\\ECG\\filtered_ecg.csv"
eda_file = "\\GSR\\filtered_eda.csv"
ppg_file = "\\GSR\\filtered_ppg.csv"
resp_file = "\\Resp\\filtered_resp.csv"
ecg_resp_file = "\\Resp\\filtered_ecg_resp.csv"
game_result = "\\*_gameResults.csv"
plot_result = "\\plot\\"

ecg_features = ECGFeatures(fs=FS_ECG)
ppg_features = PPGFeatures(fs=FS_GSR)
eda_features = EDAFeatures(fs=FS_GSR)
resp_features = RespFeatures(fs=FS_RESP)
min_len = FS_RESP * (SPLIT_TIME + 1)

for folder in glob.glob(data_path):
    for subject in glob.glob(folder + "\\*A6-2020-*"):
        # try:
        data_EmotionTest = pd.read_csv(glob.glob(subject + game_result)[0])
        data_EmotionTest["Time_Start"] = data_EmotionTest["Time_Start"].apply(
            timeToInt)
        data_EmotionTest["Time_End"] = data_EmotionTest["Time_End"].apply(
            timeToInt)
        # ecg
        ecg = pd.read_csv(subject + ecg_file)