コード例 #1
0
ファイル: e2tomoaverage.py プロジェクト: kttn8769/eman2
    def execute(self, alignment_jobs, files, caller):
        '''
		The main function
		@param alignment_jobs a list of alignment pair indices like this [[0,1],[2,1],[2,3],[0,5],...] etc the indices pair represent images to be aligned and correspond to the order of the files argument
		@param files a list of filenames - used to read image based on the indices present in alignment_jobs
		@param caller - the calling object - it needs to have a function called process_output that takes a dictionary as the argument 
		'''
        options = self.options
        align_data = EMAN2.parsemodopt(options.align)
        align_cmp_data = EMAN2.parsemodopt(options.aligncmp)
        cmp_data = EMAN2.parsemodopt(options.cmp)
        ralign_data = None
        if options.ralign != None:
            ralign_data = EMAN2.parsemodopt(options.ralign)
            ralign_cmp_data = EMAN2.parsemodopt(options.raligncmp)

        data = {}
        data["align"] = align_data
        data["aligncmp"] = align_cmp_data
        data["cmp"] = cmp_data
        if ralign_data:
            data["ralign"] = ralign_data
            data["raligncmp"] = ralign_cmp_data

        data["using_cuda"] = self.using_cuda
        data["nsoln"] = self.nsoln

        if self.options.parallel:
            task_customers = []
            tids = []

            if options.shrink:
                scratch_name_1 = numbered_bdb(
                    "bdb:tomo_scratch#scratch_shrink")
                scratch_name_2 = numbered_bdb(
                    "bdb:tomo_scratch##scratch_shrink")
            else:
                print("no shrink")

            for i, j in alignment_jobs:
                if options.shrink or options.filter:

                    a = EMData(files[i], 0)
                    if options.filter:
                        filter_params = EMAN2.parsemodopt(options.filter)
                        a.process_inplace(filter_params[0], filter_params[1])
                    if options.shrink:
                        a.process_inplace("math.meanshrink",
                                          {"n": options.shrink})

                    a.set_attr("src_image", files[i])
                    a.write_image(scratch_name_1, 0)

                    a = EMData(files[j], 0)
                    if options.filter:
                        filter_params = EMAN2.parsemodopt(options.filter)
                        a.process_inplace(filter_params[0], filter_params[1])
                    if options.shrink:
                        a.process_inplace("math.meanshrink",
                                          {"n": options.shrink})
                    a.set_attr("src_image", files[j])
                    a.write_image(scratch_name_2, 0)

                    data["probe"] = ("cache", scratch_name_1, 0)
                    data["target"] = ("cache", scratch_name_2, 0)
                else:
                    data["probe"] = ("cache", files[i], 0)
                    data["target"] = ("cache", files[j], 0)

                data["target_idx"] = j
                data["probe_idx"] = i

                task = EMTomoAlignTaskDC(data=data)

                from EMAN2PAR import EMTaskCustomer
                etc = EMTaskCustomer(self.options.parallel)
                #print "Est %d CPUs"%etc.cpu_est()
                tid = etc.send_task(task)
                #print "Task submitted tid=",tid

                task_customers.append(etc)
                tids.append(tid)

            self.dc_monitor(task_customers, tids, caller)
        else:
            n = len(alignment_jobs)
            p = 0.0
            for i, j in alignment_jobs:

                probe = EMData(files[i], 0)
                target = EMData(files[j], 0)

                if options.filter:
                    print("filtered")
                    filter_params = EMAN2.parsemodopt(options.filter)
                    probe.process_inplace(filter_params[0], filter_params[1])
                    target.process_inplace(filter_params[0], filter_params[1])

                if options.shrink:
                    probe.process_inplace("math.meanshrink",
                                          {"n": options.shrink})
                    target.process_inplace("math.meanshrink",
                                           {"n": options.shrink})
                else:
                    print("no shrink")

                data["target"] = target
                data["probe"] = probe
                data["target_idx"] = j
                data["probe_idx"] = i

                task = EMTomoAlignTask(data=data)
                rslts = task.execute(self.progress_callback)

                if options.shrink:
                    self.correction_translation(rslts, options.shrink)
                caller.process_output(rslts)

                p += 1.0
コード例 #2
0
ファイル: e2tomoaverage.py プロジェクト: cpsemmens/eman2
	def execute(self,alignment_jobs,files,caller):
		'''
		The main function
		@param alignment_jobs a list of alignment pair indices like this [[0,1],[2,1],[2,3],[0,5],...] etc the indices pair represent images to be aligned and correspond to the order of the files argument
		@param files a list of filenames - used to read image based on the indices present in alignment_jobs
		@param caller - the calling object - it needs to have a function called process_output that takes a dictionary as the argument 
		'''
		options = self.options
		align_data = EMAN2.parsemodopt(options.align)
		align_cmp_data = EMAN2.parsemodopt(options.aligncmp)
		cmp_data = EMAN2.parsemodopt(options.cmp)
		ralign_data = None
		if options.ralign != None: 
			ralign_data = EMAN2.parsemodopt(options.ralign)
			ralign_cmp_data = EMAN2.parsemodopt(options.raligncmp)
			
		
		data = {}
		data["align"] = align_data
		data["aligncmp"] = align_cmp_data
		data["cmp"] = cmp_data
		if ralign_data:
			data["ralign"] = ralign_data
			data["raligncmp"] = ralign_cmp_data
			
		data["using_cuda"] = self.using_cuda
		data["nsoln"] = self.nsoln
			
		if self.options.parallel :
			task_customers = []
			tids = []

			if options.shrink:
				scratch_name_1 = numbered_bdb("bdb:tomo_scratch#scratch_shrink")
				scratch_name_2 = numbered_bdb("bdb:tomo_scratch##scratch_shrink")
			else: print "no shrink" 

			for i,j in alignment_jobs:
				if options.shrink or options.filter:
					
					a = EMData(files[i],0)
					if options.filter:
						filter_params = EMAN2.parsemodopt(options.filter)
						a.process_inplace(filter_params[0],filter_params[1])
					if options.shrink:
						a.process_inplace("math.meanshrink",{"n":options.shrink})
					
					a.set_attr("src_image",files[i])
					a.write_image(scratch_name_1,0)
					
					a = EMData(files[j],0)
					if options.filter:
						filter_params = EMAN2.parsemodopt(options.filter)
						a.process_inplace(filter_params[0],filter_params[1])
					if options.shrink:
						a.process_inplace("math.meanshrink",{"n":options.shrink})
					a.set_attr("src_image",files[j])
					a.write_image(scratch_name_2,0)
					
					data["probe"] = ("cache",scratch_name_1,0)
					data["target"] = ("cache",scratch_name_2,0)
				else:
					data["probe"] = ("cache",files[i],0)
					data["target"] = ("cache",files[j],0)
				
				
				data["target_idx"] = j
				data["probe_idx"] = i

				task = EMTomoAlignTaskDC(data=data)
				
				from EMAN2PAR import EMTaskCustomer
				etc=EMTaskCustomer(self.options.parallel)
				#print "Est %d CPUs"%etc.cpu_est()
				tid=etc.send_task(task)
				#print "Task submitted tid=",tid
				
				task_customers.append(etc)
				tids.append(tid)
			
			self.dc_monitor(task_customers,tids,caller)
		else:
			n = len(alignment_jobs)
			p = 0.0
			for i,j in alignment_jobs:
				
				probe = EMData(files[i],0)
				target = EMData(files[j],0)
				
				if options.filter:
					print "filtered"
					filter_params = EMAN2.parsemodopt(options.filter)
					probe.process_inplace(filter_params[0],filter_params[1])
					target.process_inplace(filter_params[0],filter_params[1])
					
				if options.shrink:
					probe.process_inplace("math.meanshrink",{"n":options.shrink})
					target.process_inplace("math.meanshrink",{"n":options.shrink})
				else:
					print "no shrink"
				
				data["target"] = target
				data["probe"] = probe
				data["target_idx"] = j
				data["probe_idx"] = i

		
				task = EMTomoAlignTask(data=data)
				rslts = task.execute(self.progress_callback)
				
				if options.shrink:
					self.correction_translation(rslts,options.shrink)
				caller.process_output(rslts)
				
				p += 1.0
コード例 #3
0
ファイル: e2tomoaverage.py プロジェクト: kttn8769/eman2
    def execute(self):
        '''
		The main function - executes the job of performing all v all boot strapped probe generation
		'''
        if self.logger: E2progress(self.logger, 0.0)
        #		all_v_all_cmd = self.get_all_v_all_cmd()
        #		all_v_all_output = self.get_all_v_all_output()
        #
        #		# NOTE: calling the allvall program is probably not strictly necessary, seeing
        #		# as there is a generic framework for generating and executing alignment jobs
        #		# implemented below that would be easily adaptable to this - however I left it
        #		# because doing it this way is absolutely equivalent and has the same cost.
        #		all_v_all_cmd += " --output="+all_v_all_output
        #		print "executing",all_v_all_cmd
        #		if self.logger:	E2progress(self.logger,0.01)
        #		if ( launch_childprocess(all_v_all_cmd) != 0 ):
        #			print "Failed to execute %s" %all_v_all_cmd
        #			sys.exit(1)
        #		if self.logger:	E2progress(self.logger,0.02)
        #
        #		images = []
        #		images.append(EMData(all_v_all_output,0))
        #		images.append(EMData(all_v_all_output,1))
        #		images.append(EMData(all_v_all_output,2))
        #		images.append(EMData(all_v_all_output,3))
        #		images.append(EMData(all_v_all_output,4))
        #		images.append(EMData(all_v_all_output,5))
        #		images.append(EMData(all_v_all_output,6))
        #
        start_n = len(self.files)  # the number of averages produced
        images = []
        e = EMData(start_n, start_n)
        e.to_zero()
        images.append(e)
        for j in range(6):
            images.append(e.copy())

        # keep tracks of the names of the new files
        big_n = images[0].get_xsize() * (images[0].get_xsize() - 1) / 2.0

        iter = 1
        current_files = self.files

        alignment_jobs = []  # a list of comparisons to be performed
        for i in range(len(current_files)):
            for j in range(i + 1, len(current_files)):
                alignment_jobs.append([i, j])

        self.register_current_images(images)
        self.register_current_files(self.files)
        alignments_manager = EMTomoAlignments(self.options)
        alignments_manager.execute(alignment_jobs, self.files, self)
        self.write_current_images(self.files)
        # this loop
        while True:
            couples = self.get_couples(images[0])
            taken = list(range(images[0].get_xsize()))

            done = False
            if len(couples) == 1 and len(taken) == 2: done = True
            #print len(couples),len(taken)
            new_files = []

            # write the averages of the couples to disk, store the new names
            for i, j in couples:
                image_1 = EMData(current_files[j], 0)
                image_2 = EMData(current_files[i], 0)

                image_1_weight = 1
                if image_1.has_attr("total_inc"):
                    image_1_weight = image_1["total_inc"]
                image_2_weight = 1
                if image_2.has_attr("total_inc"):
                    image_2_weight = image_2["total_inc"]
                total_weight = image_1_weight + image_2_weight
                image_1.mult(old_div(float(image_1_weight), total_weight))
                image_2.mult(old_div(float(image_2_weight), total_weight))

                d = {}
                d["type"] = "eman"
                d["tx"] = images[1].get(i, j)
                d["ty"] = images[2].get(i, j)
                d["tz"] = images[3].get(i, j)
                d["az"] = images[4].get(i, j)
                d["alt"] = images[5].get(i, j)
                d["phi"] = images[6].get(i, j)
                t = Transform(d)
                image_1.process_inplace("xform", {"transform": t})

                image_2 += image_1
                image_2.set_attr(
                    "src_image",
                    current_files[j])  # so we can recollect how it was created
                image_2.set_attr(
                    "added_src_image",
                    current_files[i])  # so we can recollect how it was created
                image_2.set_attr("added_src_transform",
                                 t)  # so we can recollect how it was created
                image_2.set_attr("added_src_cmp", images[0](
                    i, j))  # so we can recollect how it was created
                image_2.set_attr(
                    "total_inc",
                    total_weight)  # so we can recollect how it was created

                output_name = numbered_bdb("bdb:" + self.options.path +
                                           "#tomo_ave_0" + str(iter - 1))
                image_2.write_image(output_name, 0)
                if self.options.dbls: self.save_to_workflow_db(output_name)
                new_files.append(output_name)
                taken.remove(i)
                taken.remove(j)

            if done: break

            num_new = len(new_files)  # the number of averages produced
            new_n = len(new_files) + len(taken)
            new_images = []
            e = EMData(new_n, new_n)
            e.to_zero()
            new_images.append(e)
            for j in range(6):
                new_images.append(e.copy())

            for i, idxi in enumerate(taken):
                new_files.append(current_files[idxi])
                for j, idxj in enumerate(taken):
                    if i == j: continue
                    else:
                        new_images[0].set(num_new + i, num_new + j,
                                          images[0].get(idxi, idxj))
                        new_images[1].set(num_new + i, num_new + j,
                                          images[1].get(idxi, idxj))
                        new_images[2].set(num_new + i, num_new + j,
                                          images[2].get(idxi, idxj))
                        new_images[3].set(num_new + i, num_new + j,
                                          images[3].get(idxi, idxj))
                        new_images[4].set(num_new + i, num_new + j,
                                          images[4].get(idxi, idxj))
                        new_images[5].set(num_new + i, num_new + j,
                                          images[5].get(idxi, idxj))
                        new_images[6].set(num_new + i, num_new + j,
                                          images[6].get(idxi, idxj))

            alignment_jobs = []  # a list of comparisons to be performed
            for i in range(num_new):
                for j in range(i + 1, len(new_files)):
                    alignment_jobs.append([i, j])

            if self.logger:
                E2progress(self.logger,
                           1.0 - old_div(len(alignment_jobs), big_n))

            self.register_current_images(new_images)
            self.register_current_files(new_files)
            alignments_manager = EMTomoAlignments(self.options)
            alignments_manager.execute(alignment_jobs, new_files, self)

            self.write_current_images(new_files)
            current_files = new_files
            images = new_images
            iter += 1
            print(couples, taken)

        if self.logger: E2progress(self.logger, 1.0)
コード例 #4
0
ファイル: e2tomoaverage.py プロジェクト: cpsemmens/eman2
	def execute(self):
		'''
		The main function - executes the job of performing all v all boot strapped probe generation
		'''
		if self.logger: E2progress(self.logger,0.0)
#		all_v_all_cmd = self.get_all_v_all_cmd()
#		all_v_all_output = self.get_all_v_all_output()
#		
#		# NOTE: calling the allvall program is probably not strictly necessary, seeing
#		# as there is a generic framework for generating and executing alignment jobs
#		# implemented below that would be easily adaptable to this - however I left it
#		# because doing it this way is absolutely equivalent and has the same cost. 
#		all_v_all_cmd += " --output="+all_v_all_output
#		print "executing",all_v_all_cmd
#		if self.logger:	E2progress(self.logger,0.01)
#		if ( launch_childprocess(all_v_all_cmd) != 0 ):
#			print "Failed to execute %s" %all_v_all_cmd
#			sys.exit(1)
#		if self.logger:	E2progress(self.logger,0.02)
#		
#		images = []
#		images.append(EMData(all_v_all_output,0))
#		images.append(EMData(all_v_all_output,1))
#		images.append(EMData(all_v_all_output,2))
#		images.append(EMData(all_v_all_output,3))
#		images.append(EMData(all_v_all_output,4))
#		images.append(EMData(all_v_all_output,5))
#		images.append(EMData(all_v_all_output,6))
#		
		start_n = len(self.files) # the number of averages produced
		images = []
		e = EMData(start_n,start_n)
		e.to_zero()
		images.append(e)
		for j in range(6): images.append(e.copy())
		
		# keep tracks of the names of the new files
		big_n = images[0].get_xsize()*(images[0].get_xsize()-1)/2.0
		
		iter = 1
		current_files = self.files
		
		alignment_jobs = []# a list of comparisons to be performed
		for i in range(len(current_files)):
			for j in range(i+1,len(current_files)):
				alignment_jobs.append([i,j])

					
		self.register_current_images(images)
		self.register_current_files(self.files)
		alignments_manager = EMTomoAlignments(self.options)
		alignments_manager.execute(alignment_jobs, self.files,self)
		self.write_current_images(self.files)
		# this loop 
		while True:
			couples = self.get_couples(images[0])
			taken = range(images[0].get_xsize())
			
			done = False
			if len(couples) == 1 and len(taken) == 2: done = True
			#print len(couples),len(taken)
			new_files = []

			# write the averages of the couples to disk, store the new names
			for i,j in couples:
				image_1 = EMData(current_files[j],0)
				image_2 = EMData(current_files[i],0)
				
				image_1_weight = 1
				if image_1.has_attr("total_inc"): image_1_weight = image_1["total_inc"]
				image_2_weight = 1
				if image_2.has_attr("total_inc"): image_2_weight = image_2["total_inc"]
				total_weight = image_1_weight+image_2_weight
				image_1.mult(float(image_1_weight)/total_weight)
				image_2.mult(float(image_2_weight)/total_weight)
				
				d = {}
				d["type"] = "eman"
				d["tx"] = images[1].get(i,j)
				d["ty"] = images[2].get(i,j)
				d["tz"] = images[3].get(i,j)
				d["az"] = images[4].get(i,j)
				d["alt"] = images[5].get(i,j)
				d["phi"] = images[6].get(i,j)
				t = Transform(d)
				image_1.process_inplace("xform",{"transform":t})
				
				image_2 += image_1
				image_2.set_attr("src_image",current_files[j]) # so we can recollect how it was created
				image_2.set_attr("added_src_image",current_files[i]) # so we can recollect how it was created
				image_2.set_attr("added_src_transform",t) # so we can recollect how it was created
				image_2.set_attr("added_src_cmp",images[0](i,j)) # so we can recollect how it was created
				image_2.set_attr("total_inc",total_weight) # so we can recollect how it was created
				
				output_name = numbered_bdb("bdb:"+self.options.path+"#tomo_ave_0"+str(iter-1))
				image_2.write_image(output_name,0)
				if self.options.dbls: self.save_to_workflow_db(output_name)
				new_files.append(output_name)
				taken.remove(i)
				taken.remove(j)
				
			if done: break
			
			num_new = len(new_files) # the number of averages produced
			new_n = len(new_files) + len(taken)
			new_images = []
			e = EMData(new_n,new_n)
			e.to_zero()
			new_images.append(e)
			for j in range(6): new_images.append(e.copy())
			
			for i,idxi in enumerate(taken):
				new_files.append(current_files[idxi])
				for j,idxj in enumerate(taken):
					if i == j: continue
					else:
						new_images[0].set(num_new+i,num_new+j,images[0].get(idxi,idxj))
						new_images[1].set(num_new+i,num_new+j,images[1].get(idxi,idxj))
						new_images[2].set(num_new+i,num_new+j,images[2].get(idxi,idxj))
						new_images[3].set(num_new+i,num_new+j,images[3].get(idxi,idxj))
						new_images[4].set(num_new+i,num_new+j,images[4].get(idxi,idxj))
						new_images[5].set(num_new+i,num_new+j,images[5].get(idxi,idxj))
						new_images[6].set(num_new+i,num_new+j,images[6].get(idxi,idxj))
			
			alignment_jobs = []# a list of comparisons to be performed
			for i in range(num_new):
				for j in range(i+1,len(new_files)):
					alignment_jobs.append([i,j])
					
			if self.logger: 
				E2progress(self.logger,1.0-len(alignment_jobs)/big_n)
					
			self.register_current_images(new_images)
			self.register_current_files(new_files)
			alignments_manager = EMTomoAlignments(self.options)
			alignments_manager.execute(alignment_jobs, new_files,self)
			
			
			
			self.write_current_images(new_files)
			current_files = new_files
			images = new_images
			iter += 1
			print couples,taken
			
			
		if self.logger: E2progress(self.logger,1.0)